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Abstract

Spoofing attacks can be easily accomplished in a facial biometric system wherein users
without access privileges attempt to authenticate themselves as valid users, in which an
impostor needs only a photograph or a video with facial information of a legitimate user.
Even with recent advances in biometrics, information forensics and security, vulnerabil-
ity of facial biometric systems against spoofing attack is still an open problem. Even
though several methods have been proposed for photo-based spoofing attack detection,
attacks performed with videos have been vastly overlooked, which hinders the use of
facial biometric systems in modern applications. In this dissertation, we present an algo-
rithm for video-based spoofing attack detection through the analysis of global information
which is invariant to the video content, since we discard video contents and only analyze
content-independent noise signatures present in the video related to the acquisition unique
processes. Our approach takes advantage of noise signatures generated by the recaptured
video to distinguish between fake and valid access videos. To capture noise properties
and obtain a compact representation of them, we use the Fourier spectrum followed by
the computation of video visual rhythms and the extraction of different characterization
methods (e.g., histogram of oriented gradients, local binary patterns and gray-level co-
occurrence matrices), used as feature descriptors. To evaluate the effectiveness of the
proposed approach, we introduce the novel Unicamp Video-Attack Database (UVAD)
which comprises 14,870 videos composed of real access and spoofing attack videos. In
addition, we evaluate the proposed method using the Replay-Attack Database, which
contain photo-based and video-based face spoofing attacks.
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Resumo

Ataques de falsificação constituem um tipo de ataque que pode ser facilmente realizado
em um sistema de biometria de face por usuários sem privilégios de acesso que tentam se
autenticar como usuários válidos ou leǵıtimos. Para isto, o usuário impostor necessita de
apenas uma fotografia ou um v́ıdeo com as informações faciais de um usuário leǵıtimo, alvo
do ataque, que pode ser obtido em redes sociais, páginas pessoais, entre outros. Mesmo
com os recentes avanços nas áreas de biometria, forense e segurança da informação, a
vulnerabilidade dos sistemas de biometria de face frente a ataques de falsificação de face é
ainda um problema em aberto. Embora diversos métodos têm sido propostos para detec-
tar ataques realizados com fotografias, o problema de detecção de ataques realizados com
v́ıdeos e modelos 3D tem sido desconsiderados, o que limita o poder de defesa e contrame-
didas dos sistemas de autenticação de aplicações modernas, principalmente em aplicações
à web e dispositivos móveis. Nesta dissertação, nós apresentamos um método para de-
tecção de ataque de falsificação de face realizado com v́ıdeo que utiliza as informações
globais presentes nos v́ıdeos, sendo invariante ao conteúdo. Em nosso método, calculamos
e analisamos a assinatura de rúıdo presente no v́ıdeo, gerado pela sua recaptura, para dis-
tinguir v́ıdeos de acessos válidos de v́ıdeos falsos. Para capturar as propriedades de rúıdo
e obter uma compacta representação, nós usamos o espectro de Fourier seguido do cálculo
do ritmo visual do v́ıdeo e da extração de caracteŕısticas por meio de diferentes métodos
de caracterização (e.g., histogramas de gradientes orientados, padrões binários locais e
matrizes de co-ocorrência em tons de cinza). Para avaliar a efetividade da abordagem
proposta, nós constrúımos a base de dados Unicamp Video-Attack Database (UVAD)
que consiste de 14.870 v́ıdeos de acesso válido e de tentativas de ataque. Além disso, nós
avaliamos o método proposto usando o Replay-Attack Database, o qual contém tentativas
de ataques de falsificação realizados com fotografias e v́ıdeos.
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I thank my wife Euridinéia for her words of confidence, comfort and motivation, which
helped me in times of trouble. I thank her love, care, support and for believing that
education will take us to a better future. Euridinéia, I love you so much.
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Chapter 1

Introduction

1.1 Conceptualization and Motivation
Biometric authentication or biometrics is a technology concerned with recognizing humans
in an automatic and unique manner based on behavior, physical and chemical traits.
Examples of physical traits include fingerprint, geometric and veins of the hand, face, iris
and retina. Speech and handwriting are examples of behavior traits and skin odor and
DNA (Deoxyribonucleic Acid) information are examples of chemical traits [24].

In the last decades, biometrics have emerged as an important mechanism for access
control that has been used in many applications, in which the traditional methods in-
cluding the ones based on knowledge (e.g., keywords, secret question) or based on tokens
(e.g., smart cards) might be ineffective since they are easily shared, lost, stolen or manip-
ulated. In contrast, the biometric access control has been shown as a natural and reliable
authentication method [24].

Access control can be seen as a verification problem wherein the authentication of a
user is performed by reading and comparing the input biometric data captured by an
acquisition sensor (query) with the biometric data of the same user previously stored in a
database (template). The comparison between the query and the template is performed
by a matching algorithm which produces a similarity score used to decide whether or not
the access should be granted to the user.

Although biometric authentication is considered a secure and reliable access control
mechanism, it becomes an easy target for attacks if protective measures are not imple-
mented. Figure 1.1 shows a general biometric authentication system without any protec-
tive measure and some points of vulnerabilities. Buhan et al. [10] provide more details
about abuses in biometric systems.

Spoofing attack is a type of attack wherein an impostor presents a fake biometric
data to the acquisition sensor with the goal of authenticating oneself as a legitimate user,

1



1.1. Conceptualization and Motivation 2

Figure 1.1: General biometric system and its vulnerability points. (a) a threat resulting
from an attack on the biometric sensor, presenting a synthetic biometric data (fake); (b),
(c) and (d) represent threats resulting from re-submission of a biometric latent signal
previously stored in the communication channel; (e) attack on the matching algorithm
in order to produce a higher or lower score; (f) an attack on the communication channel
between the enrollment center and the database (the control of this channel allows an
attacker to overwrite the template that is sent to the biometric database); (g) an attack
on the actual database itself, which could result in corrupted models, denial of service to
the person associated to the corrupted model, or fraudulent authorization of an individual;
(h) an attack that consists in overwriting the output of the matching algorithm, bypassing
the authentication process. Image adapted from Buhan et al. [10].

illustrated in Figure 1.1(a). Depending on the biometric trait used by the system, this
mode of attack can be easily accomplished because some biometric data can be synthet-
ically reproduced without much effort. Face biometric systems are highly vulnerable to
such attacks since facial traits are widely available on the Internet, on personal websites
and social networks such as Facebook1, MySpace2, YouTube3. In addition, we can easily
collect facial samples of a person with a digital camera.

In the context of face biometrics, an attempt of spoofing attack can be performed
by presenting to the acquisition sensor a photograph, a video or a 3D face model of a

1http://www.facebook.com
2http://www.myspace.com
3http://www.youtube.com
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legitimate user enrolled in the database. If an impostor succeeds in the attack using any
of these approaches, the uniqueness premise of the biometric system is violated, making
the system vulnerable [24].

1.2 Objective
Several methods have been proposed in the literature to detect spoofing attacks based on
photographs, whereas attacks performed with videos and 3D models have been overlooked.
We believe that attacks performed with videos and 3D models (rigid and realistic masks)
is more difficult to be detected due the a best quality of the fake biometric samples.
Many methods aim at distinguishing real from fake biometric data based on the fact
that artifacts are inserted into the printed samples due to printing process, therefore
allowing one to explore attributes related to such artifacts including color, shape and
texture [34, 51, 55]. Since photographs are static, another approach is to detect small
movements in the face [30,41,61]. Recent works [4,42] investigate context information of
the scene (e.g., background information) to detect face liveness.

We believe that the aforementioned approaches are not suitable for detecting video-
based attacks directly, especially in high resolution videos. The difficulty in detecting
spoofing performed by video lies in the fact that it is easier to deceive an authentication
system through a video since the dynamics of the video makes the biometric data more
realistic. Furthermore, the content of a video is less affected by degradations in terms of
color, shape or texture, unlike the printed images. Finally, we have less artifacts generated
during quantization and discretization of the image captured by the imaging sensor in high
resolution videos.

In this dissertation, we present a method for detecting video-based face spoofing at-
tacks under the hypothesis that fake and real biometric data contain different acquisition-
related noise signatures. To the best of our knowledge, this is the first attempt of dealing
with video-based face spoofing based on the analysis of global information that is invariant
to the video content. Our solution explores the artifacts added to the biometric samples
during the viewing process of the videos in the display devices and noise signatures added
during the recapture process performed by the acquisition sensor of the biometric system.
Through the spectral analysis of the noise signature and the use of visual rhythms, we
designed a feature characterization process able to incorporate temporal information of
the behavior of the noise signal from the biometric samples.

To contemplate a more realistic scenario, this dissertation introduces the Unicamp
Video-Based Attack Database (UVAD)4, specifically developed to evaluate video-based

4This database will be make public and freely available. Users present in the database formally
authorized the release of their data for scientific purposes.
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attacks in order to verify the following aspects/questions:

• The behavior of the method for attempted attacks with high resolution videos;

• The influence of the display devices in our method;

• Whether attacks with tablets are more difficult to be detected;

• The influence of the biometric sensor in our method;

• The best feature characterization to capture the video artifacts;

• Comparison with one of the best anti-spoofing methods for photo-based spoofing
attack of notice.

1.3 Contributions
Such verifications can be accomplished due the diversity of the devices used to create
the database which comprises valid access and attempted attack videos of 304 different
people. Each user was filmed in two sections in different scenarios and lighting conditions.
The attempted attack videos were produced using eight different display devices and three
digital cameras from different manufacturers. The database has 608 valid access videos
and 14, 262 videos of video-based attempted spoofing attacks, all in full high definition
quality.

In summary, the main contributions of this work are:

(i) An efficient and effective method for video-based face spoofing attack detection able
to recognize attempted attacks carried out with high resolution videos;

(ii) The creation of a large and publicly available database to evaluate spoofing attacks
specific methods performed with videos considering several display devices and dif-
ferent acquisition sensors;

(iii) The Evaluation of the video characterization process considering different image
features such as the Gray-Level Co-occurrence Matrices (GLCM), Histograms of
Oriented Gradients (HOG) and Local Binary Patterns Histogram (LBPH) feature
descriptors;

(iv) A detailed study of the video-based spoofing attack problem that yielded important
conclusions that certainly will be useful for the proposition of new anti-spoofing
methods for video-based attacks.
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1.4 Related Publications with this Dissertation
The preparation of scientific papers that reflected the progress of the project and contri-
butions to the literature were done gradually during the second year of this work. The
following are publications sorted by date:

1. Allan Pinto, William Robson Schwartz, Hélio Pedrini, and Anderson Rocha. A
Countermeasure Method for Video-Based Face Spoofing Attacks. In IEEE Trans.
on Information Forensics and Security (T.IFS). (Submitted paper, 2013).

2. I. Chingovska, J. Yang, Z. Lei, D. Yi, S. Z. Li, O. Kähm, C. Glaser, N. Damer, A.
Kuijper, A. Nouak, J. Komulainen, T. Pereira, S. Gupta, S. Khandelwal, S. Bansal,
A. Rai, T. Krushna, D. Goyal, M.-A. Waris, H. Zhang, I. Ahmad, S. Kiranyaz, M.
Gabbouj, R. Tronci, M. Pili, N. Sirena, F. Roli,J. Galbally, J. Fierrez, A. Pinto, H.
Pedrini, W. S. Schwartz, A. Rocha, A. Anjos, S. Marcel. The 2nd Competition on
Counter Measures to 2D Face Spoofing Attacks. In Intl. Conference on Biometrics
(ICB), 2013, Madri. The 6th IAPR Intl. Conference on Biometrics, 2013.

3. T. Carvalho, A. Pinto, E. Silva, F. O. Costa, G. R. Pinheiro, A. Rocha. Crime
Scene Investigation (CSI): da Ficção à Realidade. In Escola Regional de Informática
de Minas Gerais (ERI-MG), 2012, Juiz de Fora. Simpósio Mineiro de Computação
(SMC), 2012.

4. Allan Pinto, Hélio Pedrini, William Robson Schwartz, Anderson Rocha. Video-
Based Face Spoofing Detection through Visual Rhythm Analysis. In Conference on
Graphics, Patterns and Images (SIBGRAPI), 2012, Ouro Preto. Proceedings of the
XXV Conference on Graphics, Patterns and Images, 2012.

1.5 Dissertation Outline
We organize the remaining of this dissertation into five sections. Section 2 discusses state-
of-the-art methods for detecting spoofing attacks to face biometrics. Section 3 presents
the proposed method aiming at dealing with video-based spoofing attacks in face bio-
metrics systems. Section 4 gives details regarding the proposed video-attack database
while Section 5 shows and discusses the experimental results. Finally, Section 6 draws the
conclusions obtained with this work and presents some possible future work directions.



Chapter 2

Related Work

According to Pan et al. [40], there are four major categories of anti-spoofing methods:
data-driven characterization, user behavior modeling, user interaction need, and the pres-
ence of additional devices. Solutions that require extra devices are limited due to their
high cost, which can prevent the use in large scale (e.g., deployment of an anti-spoofing
solution on all ATMs of a banking network). The user cooperation during the biometric
authentication can also be used to facilitate spoofing attack detection, however, this proce-
dure lessens the transparency and inserts an additional time in the authentication process.
Finally, the user behavior modeling approach (e.g., eye blinking, small face movements)
has been considered in the literature for photo-based face spoofing detection, nevertheless,
this approach might not work well to video-based spoofing attack detection due to the
high dynamics present in video scenes. Solutions based on data-driven characterization
explore biometric data by thoroughly searching for evidence and artifacts useful to detect
attempted attacks.

In this section, we review the literature on user behavior modeling and data-driven
characterization methods, since such methods are preferable in practice because they are
non-intrusive and do not require extra devices nor human interaction. Therefore, they are
easily integrable to existing face recognition systems. In this category, there are several
methods for photo-based spoofing attack detection that explore clues such as motion and
frequency analysis, scene information, and texture. Before going any further, however, we
first present some available face-related spoofing databases in the literature since most of
the methods use one or some of such reference benchmarks.

6
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2.1 Existing Databases
NUAA Database

The NUAA Photograph impostor database [55] comprises 5, 105 valid access images and
7, 509 fake images collected with a generic webcam, for which was reported an area under
the receiver operating characteristic curve (AUC) of 94% classification rate. The images
of valid access were collected of 15 identities in three sections in different places and
illumination conditions, all with 640 × 480 pixel resolution. The production of the fake
samples were done by taking high resolution photographs of 15 identities with a Canon
digital camera. The authors simulated two attack modes: (1) printing photographs in
the photo paper in the sizes 6.8cm ×10.2cm and 8.9cm ×12.7cm; and (2) printing the
photographs in the A4 70g paper using an HP color printer.

Print-Attack Database

The Print-Attack database [4] contains short videos of valid access and photo-based spoof-
ing attacks of 50 identities. The valid access videos were generated in two different con-
ditions: (1) in a controlled environment with a uniform background illuminated with
fluorescent lamp; and (2) an uncontrolled environment with an irregular background illu-
minated with daylight. Two video sequences were collected for each user using an Apple
MacBook webcam, all videos with 320× 240 pixel resolution, 25 frames per second (fps)
and 15 seconds of duration. The attempted attack videos were generated by taking two
high resolution photographs with a Canon PowerShot digital camera of the 50 identities.
Then, the photographs were printed on common A4 papers using a Triumph-Adler DCC
2520 color laser printer. The attempted attack videos were produced showing the pho-
tographs to the same webcam used in the generation of the valid access videos, considering
two attack modes: (1) hand-based attacks wherein the impostor user presents the pho-
tographs using her own hands; and (2) fixed-support attacks in which the photographs
were glued on a wall so that they do not move during the attempted attacks. In total,
200 access valid videos and 200 attempted attack videos were generated.

CASIA Database

The CASIA database [63] comprises 600 video clips of 50 identities. The videos were
filmed in a natural scene with three cameras: a new and an old USB camera both with
640×480 pixel resolution and a Sony NEX-5 digital camera with 1, 920×1, 080 pixels. The
database contains three attack modes: (1) warped photo attack, (150 640×480-attempted
attack videos); (2) cut photo attack (150 640 × 480-attempted attack videos); and (3)
video playback using an iPad (150 1, 280× 720-attempted attack videos). Although this
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database has a variety of attacks, some factors hamper the evaluation of other methods
with this database. For instance, the authors failed to prevent the downsizing of the
videos shown during the simulation of the video-based spoofing attacks which severely
damage the videos since such downsizing adds artifacts to the attempted attack videos
that are not present in the valid access videos, creating an artificial data separability.
Furthermore, the small amount of data and the use of only one device in the creation of
the video-based spoofing attacks prevent more refined investigations.

Replay-Attack Database

The Replay-Attack database [13] contains short video recordings of valid access and at-
tempted attacks of 50 identities. Similarly to the Print-Attack [4], the videos were gener-
ated with a low resolution webcam with 320× 240 pixel resolution, 25 fps and 15 seconds
of duration and the video capture process is the same as described in [4]. However, differ-
ent from [4], two other attempted attack modes are considered: (1) mobile attacks where
the impostor user displays photographs and videos in an iPhone screen produced with
the same iPhone; and (2) high-definition attacks where the impostor user shows high res-
olution photographs and videos produced with a Canon PowerShot digital camera using
the screen of a 1024× 768-pixel resolution iPad.

2.2 Motion Analysis and Clues of the Scene
Motion analysis of the face region was an early approach used to detect the liveness of
biometric samples. In [41], Pan et al. investigated the action of eye blinking to detect
attacks performed with photographs. The authors proposed the use of the undirected
conditional random field framework to model the action of opening and closing eyes.
Tests were performed in a database with 80 videos and 20 identities using a webcam. The
solution obtained results with a false alarm rate smaller than 1%.

Li et al. [30] proposed a method for detecting a person’s eye blink based on the fact
that, for liveness detection, edges vary homo-responsively to the behavior of eye blink over
some scales and orientations. Analyzing the trends of Gabor response waves in multi-scale
and multi-orientation, the authors choose the five most homo-responsive Gabor response
waves to the behavior of eye blink. The authors collected a database with 10 videos of
attempted spoofing attacks performed with photographs and 10 videos of valid access,
which were correctly classified.

In [61], Xu et al. proposed a method for detecting the eye states formulated as a
binary classification problem in which the closed state represents the positive class and
the open state the negative class. In order to form the feature vectors to be classified, the
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region of the eyes is scanned with N blocks of different sizes for each biometric sample.
For each block, three different feature vectors were extracted by using variants of the
Local Binary Pattern Histogram method, generating three sets with N feature vectors.
Finally, the vectors that form each set were concatenated, producing three feature vectors
for each image. The authors collected 11, 165 images from which 5, 786 were used in the
training stage. The best reported detection rate was 98.3%.

Tronci et al. [56] proposed an anti-spoofing method using the motion information and
clues that are extracted from the scene considering static and video-based analyses. An
static analysis consists of capturing spatial information of the still images using different
visual features as color and edge directivity descriptor, fuzzy color and texture histogram,
MPEG-7 descriptors, Gabor texture, Tamura texture, RGB and HSV histograms, and
JPEG histogram. These analyses are motivated by the loss of quality and by the addition
of noise in the biometric samples during the manufacturing process of the photographs.
Video-based analysis is performed as a combination of simple measures of motion such
as eye blink, mouth movement, facial expression change among others. In the end, a
classifier is trained for each feature and a fusion scheme is then performed between the
classifiers to decide whether a biometric sample is a fake or not.

Pan et al. [42] extended the method described in [41] including context information
of the scene assuming a static facial recognition system whose background is previously
known, denoted as reference scene. Similarly to [41], the authors analyzed clues such as eye
blink in the face region. Considering a region of the face, within a certain neighborhood,
the authors extracted a set of key points and, for each point, they calculated a Local Binary
Pattern Histogram. Then, the χ2 distance function is used to compare these histograms
with other previously calculated key points of the reference scene. The validation was
performed using a private database created by the authors in which are reported excellent
results.

In [4], Anjos et al. proposed a database and a method for photo-based spoofing attack
detection assuming a stationary facial recognition system which produced videos of the
biometric samples. In this case, the intensity of the relative motion between the region of
the face and the background can be used as a clue to distinguish valid access of attempted
attacks. The authors calculate a measure of motion for each video frame obtaining a one-
dimensional signal, which is described by the extraction of five measures to form a feature
vector. The authors validated the method using the Print-Attack database (c.f., Sec. 2.1).

Yan et al. [62] proposed a method to liveness detection based on three scene clues in
both spatial and temporal spaces. According to the authors, the non-rigid facial motion
and the face-background consistency incorporate temporal information that can help the
decision-making process regarding the face liveness. In the non-rigid facial motion analy-
sis, the authors seek a pattern of non-rigid motion in the region of the face using the batch
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image alignment method. The face-background consistency is based on the fact that if the
face is real, its motion must be totally independent of the background and is performed
separating the region of the face from background and analyzing the motion. Finally, the
authors perform a banding artifact analysis, which are treated as additive noise. For that,
the authors calculated the first order wavelet decomposition of the image. The authors
validated the method using the Print-Attack database (c.f., Sec. 2.1) as well as others
created by them. Good results were reported.

2.3 Texture and Frequency Analysis
Li et al. [31] proposed an anti-spoofing method for photo-based attempted attacks under
the assumption that the faces present in photographs are smaller than the real faces and
that the expressions and poses of the faces in the photographs are invariant. According to
the authors, these facts are reflected in the image frequency domain whose high frequency
components are less expressive in the photographs. Thus, the detection of an attack
through photographs is performed by analyzing the 2-D Fourier spectrum of the samples
and calculating the energy rate of the high frequency components, which is used as a
threshold to decide whether the biometric sample came from a fake face or not.

In [55], Tan et al. proposed an anti-spoofing solution to attempted attacks performed
with printed photographs based on Lambertian reflectance to distinguish real from fake
biometric samples, assuming that the surface roughness of both classes are different. The
authors proposed the use of the Variational Retinex-based and Logarithmic Total Varia-
tion methods for estimating the luminance and reflectance of an input image, respectively.
Moreover, the calculation of the Fourier spectrum of the filtered image with the Difference
of Gaussian is used to capture artifacts inserted into the samples during the printing pro-
cess of the attack photographs. The authors modeled the detection problem as a binary
classification problem and evaluated the use of the Sparse Logistic Regression and Sparse
Low Rank Bilinear Logistic Regression methods for classifying the luminance, reflectance,
and Fourier spectrum images previously estimated. The authors validated the method
using the NUAA Photograph impostor database (c.f., Sec. 2.1).

Peixoto et al. [43] extended the technique proposed in [55] to detect attempted spoofing
attacks performed in an environment with poor illumination. This extension is based on
the fact that the brightness of the LCD screens affect the images in the recapturing
process by allowing that the edges of the images become more susceptible to the blurring
effect. Thus, the authors proposed an intermediate step before the reflectance feature
extraction by applying an adaptive histogram equalization in the images. The evaluation
of the extended algorithm was performed in the NUAA and Yale Face Databases [20].
The achieved results showed that the proposed extension reduced the misclassification
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in more than 50% to attempted attacks with high resolution photographs of the NUAA
database.

Määttä et al. [34] proposed to solve the photo-based spoofing problem based on the
fact that real and fake biometric facial samples differ: (1) in how these objects reflect
light, since human faces are 3D objects and faces printed are planar objects; (2) in the
pigmentation; and (3) in the quality due to printing defects contained in the photographs.
Based on these observations, the authors used the Local Binary Pattern method for
capturing micro-textures information. Several Local Binary Pattern Histograms were
computed and concatenated, generating a feature vector with 833 dimensions. Finally,
the Support Vector Machine (SVM) technique was used to train a binary classifier to
decide whether an input sample was fake. The authors evaluated the proposed algorithm
considering the NUAA database (c.f. Sec. 2.1), obtaining an AUC of 99%. In [35], the
same authors extended their algorithm evaluating the use of the Histogram of Oriented
Gradient (HOG)(c.f., Sec. 3.4.3) and the Gabor wavelet descriptors to detect printing
defects and improve the texture description of the biometric samples.

Aiming at finding an appropriate feature space suitable to separate real from fake faces
produced by printed photographs, Schwartz et al. [51] proposed a solution that explores
different properties of the region of the face such as texture, color and shape to obtain a
face holistic representation. Considering only the face region, for each frame of the video
containing the facial information, it is generated a feature vector formed by combining
of different low-level feature descriptors as HOG, Color Frequency (CF) [53], Gray Level
Co-occurrence Matrix (GLCM)(c.f., Sec. 3.4.1), and Histograms of Shearlet Coefficients
(HSC) [52]. Then, the feature vectors are combined into one feature vector containing
a rich spatial-temporal information of the biometric sample and fed to a Partial Least
Square classification technique. Excellent results were reported by the authors using the
Print-Attack database.

In [25], Kim et al. explored the frequency and texture information to distinguish
real faces from faces in photographs. According to the authors, the use of the frequency
information makes sense for two reasons: (1) the difference in the existence of 3D shapes
leads to the difference in low frequency regions which is closely related to the luminance
component; and (2) the difference between real and fake faces generates a disparity in
the high frequency information. The motivation for the use of texture information lies
in the fact that printed faces tend to loose the richness of texture details. Their method
extracts a feature vector from each biometric sample transforming the images to the
frequency domain using the Fourier transform and calculating their respective Fourier
spectrum in logarithm scale, from which average values of the energy of 32 concentric
rings are extracted. These values are concatenated and normalized, generating a feature
vector. Texture analysis is performed by using the Local Binary Pattern method. Finally,
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fusion of the two binary classifiers is performed, which are trained one at each feature
space using the Support Vector Machine technique.

Recently, Zhang et al. [63] proposed a simple algorithm for detecting photo-based at-
tempted spoofing attacks based on the fact that fake faces present lower quality compared
with real faces. For a given image captured by the acquisition sensor, four Difference of
Gaussian filters (DoG) with different values of σ were used to extract high frequency
information, generating four new images that were concatenated and used as input of a
binary classifier trained using the Support Vector Machine technique.

In [13], Anjos et al. conducted a study to investigate the potential of texture descrip-
tors based on Local Binary Pattern (LBP)(c.f., Sec. 3.4.2), such as LBPu2

3×3, transitional
(tLBP), direction-coded (dLBP) and modified LBP (mLBP). From the histograms gen-
erated from the descriptors mentioned above, the authors evaluated a simple manner to
classify them based on histogram comparisons through χ2 distance. A set of classifiers
was considered, such as Linear Discriminant Analysis (LDA) and SVM with a radial
basis function as kernel. Evaluations were performed on the NUAA, Print-Attack, and
Replay-Attack databases (c.f., Sec. 2.1).

2.4 Other Approaches
Optical flow analysis has also been considered in the literature for photo-based spoofing
attack detection. Bao et al. [5] proposed an anti-spoofing solution based on the analysis
of the characteristics of the optical flow field generated for a planar and 3D object.

Unlike the faces contained in photographs, which are regular planar objects, real faces
are irregular and 3D objects, which lead to a differentiation between the optical flow fields
generated for real and fake faces. In [26], Kollreider et al. analyzed the trajectory of three
parts of the face: the region between eyes and nose, left ear, and right ear. Using optical
flow patterns and a model based on Gabor decomposition, the authors note that, in real
faces, these parts of the face move differently from fake faces.

To detect face liveness using 3D information, Marsico et al. [37] proposed an anti-
spoofing solution based on the theory of 3D projective invariants. By the fundamental
theorem of the invariant geometry, it is possible to show that the cross ratio of five points
on the same plane are invariant to rotations if and only if the these points satisfy specific
collinearity or co-planarity constrains. Thus, six cross-ratio measures are computed to
different configurations of points located in non-coplanar regions of the face (e.g. center
of eyes, nose tip and chin). If a pose of the face located in front of the acquisition sensor
changes, but the computed cross ratio remains constant, the points must be coplanar (i.e.,
they belong to a planar fake face).

In order to improve the attack detection rate, some authors have proposed fusion
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schemes between methods with different approaches. According to Komulainen et al. [28]
there is no single method for face spoofing attacks detection sufficiently robust to all
types of attacks, due to the diversity of attempted attacks and the acquisition and display
devices. With this in mind, some authors have explored fusion schemes between existing
methods in the literature.

Komulainen et al. [28] proposed a fusion scheme at score level of the methods based
on the texture and motion analysis. For that, a video is divided into overlapping windows
with N frames with an overlap of N-1 frames. Thus, facial texture analysis is done using
only the last frame of each window and the motion correlation analysis is carried out
over the whole window. Each observation window produces a score for each approach
independent of the other windows. Finally, the fusion between the scores obtained by
both methods is done using linear logistic regression.

In order to get diversity among different databases, Pereira et al. [18] proposed a
fusion scheme of three anti-spoofing methods [4, 13, 27] that were tuned in two different
databases. A selection of classifiers is made to decide which classifiers participate of the
fusion scheme and issue the final decision.

Considering face spoofing attacks performed with 3D masks, Erdogmus et al. [19]
proposed a database containing videos of 17 subjects that represent valid accesses and
attempted attacks performed with 3D masks. The data were collected in three sessions
for all subjects and five videos of 300 frames in each session. These data were captured
by a Microsoft Kinect sensor and each frame is composed of an RGB image and a depth
image. The authors evaluated the properties of micro-textures to distinguish between
attempted attack and valid access videos. The micro-texture were extracted by various
LPB operators that were used to construct binary classifiers to decide whether a biometric
data is real or fake. Similarly, [29] applied the proposed method in [34] to detect attempted
attacks performed with 3D masks.

Finally, recent works have been developed in order to evaluate spoofing attacks in
multi-modal biometric systems including [2, 3, 8, 9, 36, 46]. In these works, the authors
investigate robust fusion schemes for spoofing attacks considering face and fingerprint
biometric traits.

2.5 Problems with the Existing Approaches
Approaches based on clues of the scene have strong constraints that make sense only to
photo-based spoofing attacks. In the case of attacks performed by video, such constraints
certainly will fail due to the dynamic nature of the scene in this type of media (e.g.,
motion). The static background assumption made in some works described earlier is
limiting since the face moves independently of the background in a video-based attempted
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spoofing attack. Moreover, the assumption of a background previously known restricts
the use of the method since in many applications (e.g., web and mobile applications)
the data acquisition is performed remotely in an environment and, therefore, we can not
assume a previously known background. Finally, we can easily change the background of
an image through image manipulation packages.

In approaches based on optical flow and motion analysis, motion is easily simulated
by rotating or bending the photographs. Moreover, such methods should be evaluated
by considering video-based attempted spoofing attacks since these media carries motion
information and, therefore, has potential to deceive such methods. Another disadvantage
of approaches based on motion analysis based approaches is that the additional time
required to capture some face motions prevents a fast spoofing detection. For example, a
type of motion analysis extensively explored in the literature is the action of eye blink that
occurs once every four or six seconds. However, this rate can be reduced to an average of
three to eight every six seconds due to psychological factors [30]. In this case, at least 20
seconds are required to detect eye blinking.

Finally, methods based on texture analysis should consider attempted attacks per-
formed with high resolution videos. Photo-based spoofing attacks have a characteristic
that facilitates the detection of this type of attack, which is absent in video-based spoof-
ing attacks: the decrease of quality of the biometric sample due to the printing process,
since printers have limitations both in terms of resolution and number of colors that can
be produced, which directly influence the texture of the biometric sample, being easily
captured by texture information.

Finally, the method proposed in this work aims at overcoming such difficulties by
capturing acquisition-related noise information features generated by the video recapture.
The fact that noise signal is independent of the image signal makes our technique inde-
pendent of the video content [33]. Furthermore, our method requires only 50 frames (≈ 2
seconds) for detecting the attempted attacks.



Chapter 3

Proposed Method

In this section, we present an algorithm for video-based attempted spoofing attack detec-
tion. Our solution relies on the fact that the addition of a noise pattern in the samples is
inevitable during the acquisition step of the facial biometric samples. The acquisition pro-
cess is performed by a camera that has an imaging sensor with thousands of photosensitive
transducers that convert light energy into electrical charges, which are converted into a
digital signal by an A/D converter. In [33], Lukäs et al. define two types of noise that
can be present in an image: the fixed pattern noise (FPN) and the noise resulting from
the photo-responsiveness of non-uniform light-sensitive cells (PRNU). The noise pattern
has been widely explored in forensic analysis of digital documents as in the problem of
identifying the specific camera that acquired a document [33,45].

During a video-based spoofing attack, we have the insertion of artifacts in the biometric
samples captured by the acquisition sensor, such as distortions, flickering, mooring, and
banding effect [7]. Such artifacts, loosely referenced in this dissertation as noise, are added
during the process of generation and viewing process of the attack video frames in display
device screens. Thus, the biometric sample extracted of an attack video will probably
contain more noise than the real biometric samples. With this in mind, we design a
feature characterization process based on noise signatures along with video summarization
methods that are used by a classification algorithm to find a decision boundary between
real and fake biometric data. Figure 3.1 summarizes the steps of the proposed method,
which are explained in detail in the following sections.

3.1 Calculation of the Residual Noise Videos
The first step of the algorithm is to isolate the noise information contained in the videos
that were captured by the acquisition sensor, hereinafter referred to as input video ν. A
video ν in the domain 2D+ t can be defined as a sequence of t frames, where each frame

15
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Figure 3.1: Proposed method. Given a training set consisting of videos of valid accesses,
video-based spoofs and a test video, we first extract a noise signature of every video
(training and testing) and calculate the Fourier Spectrum on logarithmic scale for each
video frame and then summarize each video by means of its visual rhythm. Considering
the training samples, we train a classifier using a summarized version of the visual rhythms
obtained by the estimation of the gray level co-occurrence matrices, as features. With a
trained classifier, we are able to test a visual rhythm for a given video under investigation
and point out whether it is a valid access or a spoof.

is a function f(x, y) ∈ N2 of the brightness of each pixel in the position (x, y) of the scene.
The extraction of the noise signal of the input video ν is performed as follows. The

frames in video ν are converted into gray-scale and an instance of νGray is submitted
to a filtering process using a low-pass filter in order to eliminate noise, generating a
filtered video νFiltered. Then, a frame-by-frame subtraction between the νGray e νFiltered
is performed, generating a new video that contains, mostly, the noise signal in which
we are interested, hereinafter named as Residual Noise Video (νNR), as formalized in
Equation 3.1. 

ν
(t)
Filtered = f(ν(t)

Gray)

ν
(t)
NR = ν

(t)
Gray − ν

(t)
Filtered ∀ t ∈ T = {1, 2, . . . , t},

(3.1)

where ν(t) ∈ N2 is the t-th frame of ν and f a filtering operation.

3.2 Calculation of the Fourier Spectrum Videos
The analysis of the noise pattern and possible artifacts contained in the biometric samples
is performed by applying a 2D discrete Fourier transform to each frame of the Noise
Residual Video (νNR) using Equation 3.2. Next, the Fourier spectrum is computed on
logarithm scale and with origin at the center of the frame (Equation 3.3). As a result of
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(a) Valid video. (b) Attack video.

Figure 3.2: Example of a video frame of the spectra generated from (a) a valid video and
(b) an attack video.

this process, we end up with a video of the spectra, further on in this document referred
to as Fourier Spectrum Videos νFS. Figures 3.2(a) and 3.2(b) depict the logarithm of
the Fourier spectrum of a video frame obtained from a valid access video and from an
attempted attack video, respectively.

F(v, u) =
M−1∑
x=0

N−1∑
y=0

νNR(x, y)e−j2π[(vx/M)+(uy/N)] (3.2)

|F(v, u)| =
√
R(v, u)2 + I(v, u)2

νFS(v, u) = log(1 + |F(v, u)|) (3.3)

3.3 Calculation of the Visual Rhythms
In order to capture the temporal information contained in the Fourier Spectrum Videos
(νFS) and summarize their content, we employ the visual rhythm technique [15]. Visual
rhythm is a simplification of a video content in a 2D image obtained by sampling regions
of the video. Applications of this concept can be found in the work by Chun et al. [14]
that use visual rhythms for fast text caption localization on video, and Guimarães et
al. [21] who propose a method for gradual transition detection in videos. The use of
visual rhythm in our work is crucial since it allows us to capture patterns that are present
in the Fourier Spectrum Videos providing an effective way of viewing a video as a still
image.

Considering a video ν in the 2D+ t domain with t frames of dimension W ×H pixels,
the visual rhythm IνR

is a representation of the video ν, in which regions of interest of
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each frame are sampled and concatenated to form a new image, called visual rhythm. The
regions of interest must be carefully chosen to be able to capture the patterns contained
in νFS. Formally, a visual rhythm IνR

of a video ν can be defined by

IνR
(z, t) = ν(x(z), y(z), t), (3.4)

where x(z) and y(z) are functions of the independent variable z. The visual rhythm is a
two-dimensional image whose vertical z axis consists of a certain group of pixels extracted
from video ν and the samples are accumulated along the time t. Therefore, according
to the mapping of x(z) and y(z), we can generate several types of visual rhythms [15].
For instance, the sampling of the central vertical pixels can be performed by applying
IνR

(z, t) = ν(x(W2 ), y(z), t). Similarly, the central horizontal pixels can be extracted by
applying IνR

(z, t) = ν(x(z), y(H2 ), t).
Given that the lower responses are mainly concentrated on the abscissa and ordinate

axes [54] of the Fourier spectrum (see Figure3.2), initially we consider two regions of
interest in the frames that form the spectrum video in the construction of two types of
visual rhythms: (1) the horizontal visual rhythm formed by central horizontal lines; and
(2) the vertical visual rhythm formed by central vertical lines. In both cases, we can
summarize relevant content of the spectrum video in a single image. Figure 3.3 depicts
the visual rhythms generated by two regions of interest considering a valid (Figures 3.3(a)
and 3.3(c)) and an attack video (Figures 3.3(b) and 3.3(d)).

Even though the visual rhythms are different for valid and attack videos, their con-
struction disregards the highest responses that are not in the abscissa and ordinate axes
and, in some cases, such information is important to make a better distinction between
valid access and attempted attack videos, as shown in Figure 3.4. With this in mind, we
extract a third type of visual rhythm by traversing along the frames of Fourier Spectrum
Videos (νFS) in a zig-zag scheme. Figure 3.5 shows the zig-zag visual rhythm generated
for a valid access video and an attempted attack video.

3.4 Feature Extraction
Once the visual rhythms are computed, we can use machine learning techniques to train
a classifier to decide whether a biometric sample is fake or not. However, if the intensity
of the pixels composing the visual rhythms are directly considered, the dimensionality of
the feature space will be extremely high and most of the traditional classification methods
will not work properly. Therefore, we need to extract a compact set of feature descriptors
that best discriminate the visual rhythms generated from the fake and valid videos. In
this work, we evaluate the use of three feature descriptors: GLCM [22], LPB [39] and
Histogram of Oriented Gradients (HOG) [17]. The choice for using GLCM and LBP
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(a) Valid video. (b) Attack video.

(c) Valid video. (d) Attack video.

Figure 3.3: Examples of visual rhythms constructed from (a)-(b) central horizontal lines
and from (c)-(d) central vertical lines. Note that the visual rhythm obtained from hori-
zontal lines has been rotated 90 degrees for visualization purposes.

(a) Valid video. (b) Attack video.

Figure 3.4: Examples of spectra whose highest responses are not only at the abscissa and
ordinates axes.

descriptors is given by the fact that the visual rhythms can be interpreted as texture
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(a) Valid video. (b) Attack video.

Figure 3.5: Examples of visual rhythms constructed by a traversal in zig-zag.

maps (see Figure 3.3). Moreover, if we consider the intensity values of the pixels of the
visual rhythms as height and edge artifacts represented along the maps, we see (Figure 3.5)
that such images have different edge forms, property that can be reasonably explored by
the HOG descriptor.

3.4.1 Gray Level Co-occurrence Matrices (GLCM)
The GLCM is a procedure suggested for obtaining the textural features of an image. It
is based on the assumption that the textural information on an image is contained in
the overall or “average” spatial relationship that the gray tones in the image have to one
another.

More specifically, it is assumed that the texture information of the image is adequately
specified by the matrix of relative frequencies Pi,j with that two neighboring pixels sepa-
rated by a distance d, one pixel with gray tone i and the other with gray tone j [22]. Such
matrix is a function of the angular relationship between the neighboring pixels as well as
a function of the distance between them. The possibles angular relations are shown in
Figure 3.6(a).

After calculating the co-occurrence matrix for four different orientations, we extracted
12 measures to summarize the textural information of each matrix: angular second-
moment, contrast, correlation, variance, inverse difference moment, sum average, sum
variance, sum entropy, entropy, difference variance, difference entropy, and directional-
ity [22]. Finally, all of the information are then combined to form a single feature vector
as illustrated in Figure 3.6(b).
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Figure 3.6: (a) Possibles angular relationship θ between the center pixel ‘•’ and its neigh-
bors that are at distance d = 1 and (b) An example of extraction of textural patterns of
image I with the GLCM descriptor.

3.4.2 Local Binary Patterns (LBP)
The LBP operator provides a robust way to describe local binary patterns. This method
allows to detect uniform local binary patterns at circular neighborhoods of any spatial
resolution as well as at any quantization of the angular space.

The LBP operator can be derived for a general case based on a circularly symmetric
neighbor set of P members on a circle of R radius, denoting the operator as LBPP,R.
Parameter P is used to control the quantization of the angular space, whereas R is used
to control the spatial resolution of the operator, as formalized in Equation 3.5. Figure 3.7
illustrates an example for calculating the binary code with 8 bits (P = 8) of a pixel
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considering a 3× 3 neighborhood (R = 1).

LBPP,R = ∑P−1
p=0 s(ip − ic)2p

s(x) =

 1, x ≥ 0
0, x < 0

(3.5)

where in this case p runs over the eight neighbors of the central pixel c, ic and ip are the
gray-level values at c and p.

11 0

0 1

01 1

78 2

3 5

19 4

4

Thresholded
by s(x) function

Binary code =  01011011
LBP =  0x1 + 1x2 + 0x4 + 1x8 + 1x16 + 0x32 + 1x64 + 1x128 = 218

Figure 3.7: A window of size 3×3 is thresholded by the value of the central pixel. The pixel
values are then multiplied by binomial weights and summed to obtain an LBP number
to this window. Thus, LBP can produce up to 28 = 256 different texture patterns, and a
histogram with 256 bins is then calculated and used as a texture descriptor.

3.4.3 Histogram of Oriented Gradient (HOG)
HOG is a descriptor extensively used in computer vision to detect objects. The basic idea
of this descriptor relies on the fact that the local appearance of the objects and shape can
be well characterized by the distribution of local intensity gradients or edge directions,
even without precise knowledge of the corresponding gradient or edge positions [17].

The computation of the HOG descriptor of a image can be describe as follow: First,
a normalization of gamma and color in the input image is performed. In sequence, the
normalized image is divided into small spatial regions, referenced as cells, and for each
cell is calculated a histogram of gradient directions. A set of cells is grouped into a
block and the concatenation of the histograms calculated from each cell followed by a
normalization results in the HOG descriptor. Figure 3.8 illustrates the computation of
the HOG descriptor.

3.5 Supervised Learning Algorithms
We approach the attempt attack detection problem as a binary classification problem.
Therefore the valid videos were labeled as the positive class and attempted attack videos
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Figure 3.8: Example of extraction of the HOG descriptor of an input image I. After the
color and gamma normalization in the image I, the resultant image INORM is divided
into cells of size 8 × 8 pixels. In sequence, for each cell is calculated a histogram of
gradients directions with nine bins. Then a set of four cells is grouped into a block and
a normalization of the histograms calculated from each cell that compose the block is
performed.

were labeled as the negative class. In this context, we evaluate the proposed charac-
terization process using two classification techniques: SVMs and Partial Least Squares
(PLS) that are used in the construction of a binary classifier to decide whether or not
a sample is fake. More details about both algorithms SVM and PLS can be found in
appendices A.1 and A.2, respectively.

The SVM algorithm [16] is a classification algorithm that has been used in many prob-
lems due to the great power of generalization achieved by the classifiers constructed with
this algorithm. Basically, the SVM uses either a linear or a non-linear mapping, depend-
ing on the type of space used to transform the original data onto a higher dimensional
one. Within this new space, the SVM finds an optimal hyperplane that separates the
input data into classes.

In order to find the optimal hyperplane, Cortes et al. [16] introduces a concept of
“margin” of a separating hyperplane that is the sum between the shortest distance from
the separating hyperplane to the closest positive sample and the shortest distance from the
separating hyperplane to the closest negative sample. The SVM looks for the separating
hyperplane with largest margin. For that, the original problem is reformulated using the
Lagrangian formulation and then the solution is found for an optimization algorithm.

PLS regression method [1,23] is based on the linear transformation of a large number
of descriptors to a new space based on a small number of orthogonal projection vectors.
In other words, the projection vectors are mutually independent linear combinations of
the original descriptors. These vectors are chosen to provide maximum correlation with
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the dependent variables, which are the labels of the data belonging to the training set.
The PLS algorithm models the relation between the training and test sets, by the

decomposition of both data sets as a product of a set of orthogonal factors and a set of
specific loadings. For that, we use the Nonlinear Iterative Partial Least Squares (NIPALS)
algorithm [58], and in this process, two important matrices are obtained, the matrix
of latent vectors and the matrix of loading, which are used in the prediction of new
observations.



Chapter 4

Database Creation

This section presents the Unicamp Video-Attack Database (UVAD) specifically built for
evaluation of the video-based spoofing attack detection methods. The UVAD contains
valid access and attempted attack videos of 304 different identities. All videos were
created at Full HD quality, with 30 frames per second and are nine seconds long.

The generation of valid access videos was performed by filming each participant in
two sections considering different backgrounds, lighting conditions, and places (indoor
and outdoor). In total, 608 videos that represent valid accesses were generated with a
9.1 megapixels Sony CyberShot DSC-HX1 digital camera. We used a tripod to avoid
disturbance in the videos during the recordings. The generated videos were cropped to
maintain a resolution of 1, 366× 768 and allow the faces to be positioned at the center of
the video frame. No resampling was performed whatsoever.

The attempted attack videos were generated by using three different digital cameras
and eight different display devices, seven different monitors with a 1, 366 × 768 pixel
resolution and one HP tablet with 1, 280× 768 pixel resolution. In total, 608 videos were
displayed on eight display devices and recaptured by the 9.1 megapixels Sony CyberShot
DSC-HX1, the 10 megapixels Canon PowerShot SX1 IS, and the 10.3 megapixels Nikon
Coolpix P100 digital cameras. Each monitor was positioned in front of each camera at a
distance of 90± 5cm supported in a tripod, so that to ensure 1, 366× 768 resolution for
each video after cropping.

As the valid access videos were cropped to maintain a 1, 366 × 768 resolution, we
guarantee that there was no scaling transformations during their exhibition, except for the
tablet where a scaling transformation was inevitable due to the screen’s lower resolution.
In total, we have generated 14, 262 attempted attack videos and 608 valid access videos.
Figures 4.1a and 4.1b illustrate real and fake video frames of UVAD dataset, respectively.
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(a) Examples of valid access video frames for outdoor (images on the top) and indoor (images on the bottom) scenes.

(b) Examples of attempted attack video frames for outdoor (images on the top) and indoor (three images on the bottom) scenes using
Sony (first and second columns), Canon (third and fourth columns) and Nikon (last column) cameras.

Figure 4.1: Examples of valid access video frames and attempted attack video frames that comprise the UVAD.
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Table 4.1 shows a comparison between the proposed UVAD database and some other
reference benchmarks in the literature. The diversity of display devices and acquisition
sensors used in the generation of UVAD is an important characteristic that is not found
in the other databases, which was essential to a better comprehension of the problem and
for a precise evaluation of the methods.

Table 4.1: Comparison of the UVAD proposed database and other available reference
benchmarks in the literature.

Database
Subjects Valid Attacks Attacks Devices used

accesses by photo by video to create the
attack videos

NUAA [55] 15 5, 105 7, 509 — —
Print-Attack [4] 50 200 200 — —

CASIA [63] 50 150 300 150 3 cameras and
1 display device

Replay-Attack [13] 50 200 200 800 2 cameras and
2 display devices

UVAD (proposed) 304 608 — 14, 262 3 cameras and
8 display devices



Chapter 5

Experimental Results

In this section, we show the details of the experiments and performance evaluations of the
developed method. For that, we first consider the database UVAD which was introduced
in Section 4 (Experiments I-V). The diversity of devices used allows us to answer impor-
tant questions regarding some of the strengths and limitations of the proposed method.
In addition, we also evaluate the proposed method using the Replay-Attack Database
(c.f., Sec. 2.1) (Experiment VI).

5.1 Protocols for the UVAD Database
In this dissertation, we define appropriate protocols for each experiment.
Protocol A. The purpose of this protocol is to check the influence of the display de-
vices over the detection method. Initially, the UVAD’s 304 identities were divided into
two subsets, A and B, both with 152 disjoint identities with two view sessions for each
person. The valid access videos of users in A were then divided to form two sets of valid
access videos, both comprising 152 videos, given that each user was recorded at two sec-
tions. The videos of the identities in B were used to simulate attempted attacks, in each
biometric sensor, generating two sets of attempted attack videos: (1) videos recaptured
by a biometric sensor under attempted attacks performed with four different display de-
vices; and (2) videos recaptured by a biometric sensor under attack carried out with the
other four different display devices. The partition considering different display devices for
both attack sets was carried out to avoid that a classifier takes biased conclusions regard-
ing videos coming from devices already seen during training even though using different
videos.
Protocol B. The aim of this protocol is to check the influence of the biometric sensor
on the proposed method. Similarly to the previous protocol, the set of 304 identities was
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divided into two subsets, A and B, both with 152 disjoint identities and with two view
sessions for each person. The valid access videos of the users of A were then divided to
form two sets of the valid access videos, both with 152 videos. Then, we use the set B to
simulate attacks in three biometric systems with three different biometric sensors. Thus
we generate six groups of attempted attack videos: (1) videos recaptured by Sony; (2)
videos recaptured by Canon; (3) videos recaptured by Nikon; (4) videos recaptured by
Sony and Canon; (5) videos recaptured by Sony and Nikon; and (6) videos recaptured
by Canon and Nikon. Our goal with these partitions is to train a classifier with videos
from two cameras and test it with the videos generated with the third, considering all
combinations, to verify the influence of the “biometric sensor” on the spoofing detection.
Protocol C. The aim of this protocol is at verifying whether attacks with tablets are
more difficult to be detected. In this protocol, we generated two sets of valid access
videos similarly to the previous protocols, but the videos of the identities in the B were
used to generate three groups of the attempted attack videos: (1) videos recaptured by
all cameras under attacks performed with a tablet; (2) videos recaptured by all cameras
under attacks performed with three different monitors; and (3) videos recaptured by all
cameras under attacks performed with the remaining four different monitors. Our goal
with these partitions is to train a classifier with the set generated by attacks with monitors
and to test it with the attacks generated with tablet and other different monitors. Once
during training, the classifier will not have access to any data coming from tablets, a good
effectiveness of this classifier in discriminating data from the tablet and monitors would
indicate whether our method is robust to attacks performed with tablets.

5.2 Parameters for the Filtering Process, Visual
Rhythm Analysis and Classification

To extract signal noise of the videos, as shown in Equation 3.1, we consider the use of
spatial linear and non-linear filters: a Gaussian filter with µ = 0, σ = 2, and size 7×7 and
a Median filter with size 7× 7, respectively. These parameters were obtained empirically
in [44] on a different dataset.

After calculating the noise signature using Equations 3.2 and 3.3, we extract the visual
rhythms of each video (horizontal and vertical) considering the first 50 frames and a block
of either 30 columns (vertical) pixels or 30 lines (horizontal). Since the visual vertical
and horizontal rhythms of each video carries different temporal information, we evaluate
the two types of visual rhythms along with their combinations. The horizontal visual
rhythms are in a dimensional space of 1366 × 1500-d while the vertical visual rhythms
are in 768 × 1500-d. To generate the zig-zag visual rhythms, we also consider the first
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50 frames of the Fourier Spectrum Videos. We extract block lines of 30 pixels through
the traversal of the frames, from left to right, top to bottom. Thus, we obtained visual
rhythms that are in a dimensional space of 17482× 1500-d.

The high dimensionality and large amount of visual rhythms prevent us from using
pixel intensities directly as features. Therefore, we consider the visual rhythms as tex-
ture maps and calculate their texture patterns using different characterization methods.
For instance, for the standard configuration, we considered the GLCM descriptor with
directions θ ∈ {0o, 45o, 90o, 135o}, distance d = 1 and 16 bins. Table 5.1 shows the
dimensionality of each feature (individually and combined).

Table 5.1: Number of features (dimensions) using either the direct pixel intensities as
features or the features extracted by image description methods.

Name Descriptor Dimensionality
Vertical Horizontal Zig-zag

Pixel Intensity 1, 152, 000 2, 049, 000 26, 223, 000
LBP 256 256 256
GLCM 48 48 48
HOG 36 36 36

In order to evaluate the robustness of the extracted features, we can use them to train a
classifier and generate a model capable of distinguishing valid and attack videos, and test
the model effectiveness. In this dissertation, we use two classification techniques: SVM
and PLS. For SVM, we use the LibSVM [12] implementation and we analyze the radial
basis function kernel, whose parameters were found using LibSVM’s built-in grid search
algorithm. For PLS, we use the the DetectorPLS method [50] and we analyze different
numbers of factors. The factors are latent variables that give us the best predictive power
and they are extracted from a set of independent variables and are used to predict a set
of dependent variables.

5.3 Experiment I: Influence of the Display Devices
The aim of this experiment is to check whether the presented method can detect attacks
with different display devices. This is an important question to be answered because if
the method is not robust to different devices, learning techniques considering an open
scenario should be considered [48], given that in this case the classifier should be able to
recognize attacks with display devices for which it has no prior knowledge.
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Considering Protocol A, this experiment was performed in two rounds: in the first
round, we train a classifier with attacks performed with four display devices and tested it
with other different display devices to evaluate the model found by the classifier. In the
second round, we train another classifier with data used in the testing step of the first
round and tested it with data used in the training step of the first round. The results
reported in Tables 5.2, 5.3, 5.4 and 5.5 correspond to the average and standard deviation
of the two settings.

Table 5.2: Results showing Area Under the receiver operating characteristic Curve (AUC)
of the experiment analyzing the influence of the display devices using a PLS Classifier
and Median Filter.

Visual Rhythms PLS classifier and Median filter
Sony Canon Nikon

Vertical x = 74.43% x = 99.98% x = 99.95%
σ = 2.67% σ = 0.01% σ = 0.06%

χ2 test (p-value) 0.0747 0.5947 0.3294

Horizontal x = 87.13% x = 100.00% x = 100.00%
σ = 3.10% σ = 0.00% σ = 0.00%

χ2 test (p-value) 0.0021 0.5738 0.5738

Vert. + Horiz. x = 86.91% x = 100.00% x = 100.00%
σ = 3.92% σ = 0.00% σ = 0.00%

χ2 test (p-value) 0.1058 0.5738 0.5738

Zig-zag x = 99.48% x = 100.00% x = 100.00%
σ = 0.67% σ = 0.00% σ = 0.00%

χ2 test (p-value) 2.76× 10−5 0.5738 0.5738

Comparing the results shown in Tables 5.2 and 5.3 and the results in Tables 5.4 and 5.5,
we can see that the Gaussian filter provides a better classification rate than the Median
filter in most cases (there is one notable exception in which the Median filtering showed
better results, in the first line of Table 5.2).

To verify whether the differences in the results are statistically significant, we carried
out a hypothesis test for two unpaired or independent samples. Once the sample values
are nominal, the most appropriate statistical test is χ2 test for two samples, whose values
are also shown in all tables. We note that, in few settings, the p-value was lower than
α = 0.05, that is, the differences were statistically significant. Due to the high accuracy
achieved, we can conclude that the display device plays an important role in the spoofing
detection task.
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Table 5.3: Results (AUC) of the experiment analyzing the influence of the display devices
using a PLS Classifier and Gaussian Filter.

Visual Rhythms PLS classifier and Gaussian filter
Sony Canon Nikon

Vertical x = 70.30% x = 99.99% x = 100.00%
σ = 4.29% σ = 0.00% σ = 0.01%

χ2 test (p-value) 2.20× 10−16 0.0183 0.2400

Horizontal x = 92.52% x = 100.00% x = 100.00%
σ = 0.67% σ = 0.00% σ = 0.00%

χ2 test (p-value) 2.08× 10−5 0.5738 0.5738

Vert. + Horiz. x = 91.81% x = 100.00% x = 100.00%
σ = 0.22% σ = 0.00% σ = 0.00%

χ2 test (p-value) 0.0337 0.5738 0.5738

Zig-zag x = 92.93% x = 100.00% x = 100.00%
σ = 1.84% σ = 0.00% σ = 0.00%

χ2 test (p-value) 0.0086 0.5738 0.5738

Table 5.4: Results (AUC) of the experiment analyzing the influence of the display devices
using a SVM Classifier and Median Filter.

Visual Rhythms SVM classifier and Median filter
Sony Canon Nikon

Vertical x = 77.18% x = 100.00% x = 99.95%
σ = 2.81% σ = 0.00% σ = 0.06%

χ2 test (p-value) 0.2567 0.6658 0.2171

Horizontal x = 86.66% x = 100.00% x = 100.00%
σ = 6.52% σ = 0.00% σ = 0.00%

χ2 test (p-value) 2.74× 10−7 6.27× 10−6 0.5459

Vert. + Horiz. x = 90.29% x = 100.00% x = 100.00%
σ = 5.33% σ = 0.00% σ = 0.00%

χ2 test (p-value) 2.20× 10−16 0.0063 0.1715

Zig-zag x = 97.58% x = 100.00% x = 100.00%
σ = 2.07% σ = 0.00% σ = 0.00%

χ2 test (p-value) 0.0040 2.20× 10−16 2.20× 10−16

5.4 Experiment II: Influence of the Biometric Sen-
sors

This experiment aims at checking whether the presented method works well in different
facial biometric systems (biometric sensors). Experiments performed with only one kind of
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Table 5.5: Results (AUC) of the experiment analyzing the influence of the display devices
using a SVM Classifier and Gaussian Filter.

Visual Rhythms SVM classifier and Gaussian filter
Sony Canon Nikon

Vertical x = 77.94% x = 99.99% x = 100.00%
σ = 7.08% σ = 0.01% σ = 0.01%

χ2 test (p-value) 0.9161 0.6679 0.5789

Horizontal x = 89.42% x = 100.00% x = 100.00%
σ = 0.60% σ = 0.00% σ = 0.00%

χ2 test (p-value) 0.0062 0.0014 0.7341

Vert. + Horiz. x = 92.55% x = 100.00% x = 100.00%
σ = 2.52% σ = 0.00% σ = 0.00%

χ2 test (p-value) 2.04× 10−9 0.1548 0.2031

Zig-zag x = 93.44% x = 100.00% x = 100.00%
σ = 0.44% σ = 0.00% σ = 0.00%

χ2 test (p-value) 4.96× 10−13 2.20× 10−16 2.20× 10−16

biometric sensor does not guarantee a broad diversity. The importance of this experiment
is due to the fact that the separability of the data in the classification may occur for reasons
inherent to the camera used, and not to the method effectiveness. Using Protocol.B, we
evaluate the different classifiers and filters considered in this dissertation, whose results
are shown in Tables 5.6, 5.7, 5.8 and 5.9.

Table 5.6: Results (AUC) of the experiment analyzing the influence of the biometric
sensors using a PLS Classifier and Median Filter.

Visual Rhythms PLS classifier and Median filter
Test with Sony Test with Canon Test with Nikon
camera and train camera and train camera and train
with others with others with others

Vertical 49.49% 97.08% 77.55%
Horizontal 82.18% 87.26% 98.57%
Vert. + Horiz. 77.69% 85.79% 98.29%
Zig-zag 67.07% 99.94% 99.14%

We note that the attempted attacks performed under the Sony camera were the most
difficult to be detected by the method whose best AUC was 84.63%. This value was
achieved by using the PLS classification technique, Gaussian filter and horizontal visual
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Table 5.7: Results (AUC) of the experiment analyzing the influence of the biometric
sensors using a PLS Classifier and Gaussian Filter.

Visual Rhythms PLS classifier and Gaussian filter
Test with Sony Test with Canon Test with Nikon
camera and train camera and train camera and train
with others with others with others

Vertical 55.78% 96.83% 95.55%
Horizontal 84.63% 88.98% 99.96%
Vert. + Horiz. 82.47% 83.14% 99.97%
Zig-zag 78.68% 99.85% 98.66%

Table 5.8: Results (AUC) of the experiment analyzing the influence of the biometric
sensors using a SVM Classifier and Median Filter.

Visual Rhythms SVM classifier and Median filter
Test with Sony Test with Canon Test with Nikon
camera and train camera and train camera and train
with others with others with others

Vertical 42.46% 99.85% 78.32%
Horizontal 83.74% 100.00% 100.00%
Vert. + Horiz. 82.71% 99.61% 99.55%
Zig-zag 66.92% 99.97% 98.73%

Table 5.9: Results (AUC) of the experiment analyzing the influence of the biometric
sensors using a SVM Classifier and Gaussian Filter.

Visual Rhythms SVM classifier and Gaussian filter
Test with Sony Test with Canon Test with Nikon
camera and train camera and train camera and train
with others with others with others

Vertical 50.76% 90.76% 79.69%
Horizontal 82.77% 99.54% 100.00%
Vert. + Horiz. 82.17% 77.97% 81.12%
Zig-zag 71.56% 99.75% 99.97%

rhythm. In contrast, attempted attacks performed under Canon and Nikon cameras were
easily detected by the method, which obtained an AUC of 100% in both cameras using
the SVM classification technique, Median filter and horizontal visual rhythm. Due to this
large percentage difference, we can conclude that the biometric sensor plays an important
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role in the spoofing detection task.

5.5 Experiment III: Attack with Tablets
With this experiment, we aim at checking whether our method is able to detect attacks
performed with tablets. As an attempted attack video can be performed with several
classes of devices, it is important to know if a specific method detects attacks carried out
with different devices other than LCD monitors. We performed this experiment using the
Protocol C and evaluate the two classifiers and filters considered in this dissertation. The
results are shown in Tables 5.10, 5.11, 5.12 and 5.13.

Table 5.10: Results (AUC) of the experiment analyzing attacks with tablets using a PLS
Classifier and Median Filter.

Attempted
attack mode Visual Rhythms PLS classifier and Median filter

Sony Canon Nikon

tablet
Vertical 72.27% 99.99% 99.99%
Horizontal 78.46% 100.00% 100.00%
Vert. + Horiz. 80.43% 100.00% 100.00%
Zig-zag 98.56% 100.00% 100.00%

monitor
Vertical 75.36% 100.00% 99.97%
Horizontal 89.85% 100.00% 100.00%
Vert. + Horiz. 89.39% 100.00% 100.00%
Zig-zag 99.99% 100.00% 100.00%

Table 5.11: Results (AUC) of the experiment analyzing attacks with tablets using a PLS
Classifier and Gaussian Filter.

Attempted
attack mode Visual Rhythms PLS classifier and Gaussian filter

Sony Canon Nikon

tablet
Vertical 71.24% 99.97% 99.99%
Horizontal 89.73% 100.00% 100.00%
Vert. + Horiz. 89.46% 100.00% 100.00%
Zig-zag 92.78% 100.00% 100.00%

monitor
Vertical 78.28% 100.00% 100.00%
Horizontal 95.41% 100.00% 100.00%
Vert. + Horiz. 95.24% 100.00% 100.00%
Zig-zag 97.83% 100.00% 100.00%
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Table 5.12: Results (AUC) of the experiment analyzing attacks with tablets using a SVM
Classifier and Median Filter.

Attempted
attack mode Visual Rhythms SVM classifier and Median filter

Sony Canon Nikon

tablet
Vertical 72.66% 100.00% 99.99%
Horizontal 76.03% 100.00% 100.00%
Vert. + Horiz. 85.68% 100.00% 100.00%
Zig-zag 98.51% 99.98% 100.00%

monitor
Vertical 77.98% 100.00% 99.32%
Horizontal 85.84% 100.00% 100.00%
Vert. + Horiz. 90.68% 100.00% 100.00%
Zig-zag 99.69% 100.00% 100.00%

Table 5.13: Results (AUC) of the experiment analyzing attacks with tablets using a SVM
Classifier and Gaussian Filter.

Attempted
attack mode Visual Rhythms SVM classifier and Gaussian filter

Sony Canon Nikon

tablet
Vertical 83.16% 99.61% 100.00%
Horizontal 83.64% 100.00% 100.00%
Vert. + Horiz. 91.08% 100.00% 100.00%
Zig-zag 90.95% 100.00% 100.00%

monitor
Vertical 82.58% 99.87% 100.00%
Horizontal 87.00% 100.00% 100.00%
Vert. + Horiz. 91.39% 100.00% 100.00%
Zig-zag 95.02% 100.00% 100.00%

According to the results, although in both attack modes the proposed method achieved
reasonable results, attacks with monitors were more easily detected, except in some set-
tings (highlighted values). However, considering the setting that we have obtained the
best classification result (Table 5.11), the obtained AUC was 95, 41% for the attacks with
monitors against an AUC of 89, 73% for attacks carried out with tablets (a difference of
5, 68 percentage points). Therefore, we can conclude with this experiment that tablet-
based attacks normally are harder to be detected than LCD-based attacks.
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5.6 Experiment IV: Influence of the Feature Descrip-
tors

In this section, we evaluate other important feature characterization methods found in the
literature, namely LBP and HOG descriptors. Although we have considered the visual
rhythms as texture maps, it is interesting to analyze the use of shape descriptors such
as HOG as well. With this experiment, it is possible to discover whether considering
the visual rhythms as texture maps is the best choice. We carried out these experiments
considering the Protocol B whose results are shown in Tables 5.14 and 5.15.

According to the results shown in the tables, the highlighted results obtained by HOG
and LBP descriptors were better than the results obtained by GLCM. Considering the
best results obtained with GLCM (using the horizontal visual rhythm), we can conclude
that GLCM was able to extract the most discriminant information of the visual rhythms.
Therefore, it is reasonable to consider the visual rhythms as texture maps in the proposed
manner.



Table 5.14: Results showing AUC using the PLS classification technique.
PLS + Median filter PLS + Gaussian filter

Descriptor Visual Rhythms Test with Test with Test with Test with Test with Test with
Sony Canon Nikon Sony Canon Nikon
camera camera camera camera camera camera

GLCM

Vertical 49.49% 97.08% 77.55% 55.78% 96.83% 95.55%

Horizontal 82.18% 87.26% 98.57% 84.63% 88.98% 99.96%

Vert. + Horiz. 77.69% 85.79% 98.29% 82.47% 83.14% 99.97%

Zig-zag 67.07% 99.94% 99.14% 78.68% 99.85% 98.66%

LBP

Vertical 44.91% 89.84% 89.54% 49.65% 98.89% 97.21%

Horizontal 53.82% 90.94% 84.30% 50.76% 97.20% 94.17%

Vert. + Horiz. 54.42% 90.38% 83.04% 51.28% 94.26% 90.86%

Zig-zag 69.31% 95.83% 79.54% 74.31% 97.85% 80.29%

HOG
Vertical 51.08% 98.34% 97.54% 50.95% 99.09% 98.93%

Horizontal 63.49% 93.48% 95.02% 59.25% 96.40% 96.70%

Vert. + Horiz. 56.37% 97.36% 95.94% 55.00% 98.25% 98.13%

Zig-zag 33.10% 91.91% 78.28% 33.22% 97.95% 86.99%



Table 5.15: Results showing AUC using the SVM classification technique.
SVM + Median filter SVM + Gaussian filter

Descriptor Visual Rhythms Test with Test with Test with Test with Test with Test with
Sony Canon Nikon Sony Canon Nikon
camera camera camera camera camera camera

GLCM
Vertical 42.46% 99.85% 78.32% 50.76% 90.76% 79.69%

Horizontal 83.74% 100.00% 100.00% 82.77% 99.54% 100.00%

Vert. + Horiz. 82.71% 99.61% 99.55% 82.17% 77.97% 81.12%

Zig-zag 66.92% 99.97% 98.73% 78.68% 99.85% 98.66%

LBP
Vertical 48.26% 89.50% 82.60% 56.15% 90.66% 92.55%

Horizontal 47.50% 80.05% 75.33% 44.33% 82.80% 82.17%

Vert. + Horiz. 47.05% 92.14% 92.10% 44.72% 85.36% 83.85%

Zig-zag 49.12% 94.03% 85.90% 55.36% 91.81% 76.96%

HOG
Vertical 43.95% 93.78% 91.89% 47.07% 90.29% 88.14%

Horizontal 45.51% 91.30% 88.56% 49.66% 98.31% 96.39%

Vert. + Horiz. 41.85% 95.20% 95.96% 48.83% 98.77% 98.93%

Zig-zag 31.49% 98.39% 94.71% 28.92% 92.49% 97.05%
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5.7 Experiment V: Comparison to a State-of-the-Art
Method

In the final round of experiments concerning the UVAD database, we compare our method
with the one proposed in [51]. We considered the Protocol B to compare both methods.
It was not possible to run the algorithm by Schwartz et al. by using the same parameters
described in [51] due to the high dimensionality of the data, even on a machine with 48GB
of RAM. The dimensionality of the feature vector generated by the original algorithm is
higher than five million dimensions for each video frame.

In order to reduce the dimensionality of the feature vectors, we applied the HOG
descriptor with blocks of sizes 128× 128 and 256× 256 with strides of 128 and 256 pixels,
respectively. The other parameters were set as described in [51]. With this, we were
able to reduce the feature vector dimensionality to 11, 000-d. Table 5.16 shows the results
obtained by using the algorithm in [51] and our method, considering the configuration that
yielded the lowest classification error. For result evaluation, we performed the McNemar
statistical test, since the data are paired in this case. Furthermore, the computational
time spent by the algorithm in [51] was ≈ 237 hours to process all the data, whereas the
method proposed in this work spent ≈ 72 hours. All experiments were conducted on an
Intel Xeon E5620, 2.4GHz quad core processor with 48GB of RAM under Linux operating
system.

With this experiment, we can conclude that our method better characterized video-
based attacks while being more efficient and suitable for different classification techniques,
once it provides more compact feature vectors.

Table 5.16: Comparison between the method presented in [51] and the method proposed
in this work considering the use of horizontal visual rhythm, Median filter and SVM
classification technique. The Results showing AUC. According to McNemar test, the
methods are statistically different.

Method Test with Test with Test with
Sony camera Canon camera Nikon camera

Schwartz et al. [51] 85.19% 97.08% 97.62%
Our method 83.74% 100.00% 100.00%
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5.8 Experiment VI: Evaluation of the Method in the
Replay-Attack Database

We evaluate our method on the Replay-Attack database (c.f., 2.1) which contains photo-
based and video-based spoofing attacks. The goal of this experiment is to verify the
effectiveness of our method on these several types of attacks. We use the experimental
protocol described in [13], and results are shown in Table 5.17. Although our method is
designed to video-based spoofing attack detection, we have obtained a promising AUC
of ≈ 93%. For reference, in [13], the authors reported a Half Total Error Rate (HTER)
of 34.01% while our method yields an HTER of 14.27% (less than half of the previous
classification error). We use a Gaussian filter with µ = 0, σ = 0.5 and size 3 × 3, and a
Median filter with size 3× 3, empirically obtained by using the Replay-Attack Database.
With this experiment, we can conclude that the proposed method is able not only to
detect video-based spoof attacks but also photo-based spoof attacks.

Table 5.17: Results showing AUC for the test set.

Visual Rhythms PLS classifier SVM classifier
Median Gaussian Median Gaussian

Vertical 83.99% 89.01% 86.26% 91.56%
Horizontal 81.98% 85.66% 80.67% 73.36%
Vert. + Horiz. 90.69% 92.98% 92.01% 91.81%
Zig-zag 78.39% 85.35% 86.56% 77.72%



Chapter 6

Conclusions and Future Work

Biometric authentication systems have been shown to be vulnerable to spoofing attacks
in the sense that impostors can gain access privileges to resources as valid users. Spoofing
attacks to a face recognition system can be performed by presenting to it a photograph,
a video, or a face mask of a legitimate user.

This dissertation proposed and evaluated a spatio-temporal method for video-based
face spoofing detection through the analysis of noise signatures generated by the video
acquisition process, which can be used to distinguish between valid and fake access videos.
Noise properties are captured using Fourier spectrum for each frame of the video. A
compact representation, called visual rhythm, is employed to detect temporal information
in the Fourier spectrum. Three different video traversal strategies are considered to form
the visual rhythms. Features are extracted from the visual rhythms through GLCM, LBP
and HOG descriptors to allow a proper distinction between fake and real biometric data.
The GLCM descriptor provided the most discriminant and compact information from the
visual rhythms.

An extensive data set, containing real access and spoofing attack videos, was created
to evaluate the proposed method, as well as the state-of-the-art approaches. Through
the conducted experiments, it possible to conclude that the display devices and biometric
sensors play an important role in the spoofing detection task. In particular, attacks per-
formed with tablets are more difficult to be detected than those performed with monitors,
which is a concern due to the increasing availability of tablets. The proposed video-based
face spoofing detection method provided competitive or even superior results in some tests
when compared to state-of-the-art approaches.

Although this dissertation represents a step towards solving the spoofing problem, it
makes it clear that the problem is not fully-solved yet and poses new questions on future
methods about how to better handle and tackle attacks related to the ever-growing market
of handheld and smartphone devices. In this sense, the dataset provided in this paper
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will be available at the IEEE Information Forensics and Security Technical Committee
website (http://tinyurl.com/pas4t9r) in order to push the spoofing detection research
frontier way beyond.

Future research efforts branch out into devising other spatio-temporal descriptors that
capture motion telltales associated with the recapture process as well as verifying other
liveness detection problems other than face recognition such as video recapturing, piracy
detection, among others. Investigations of facial biometric systems under attack with 3D
masks are also of interest along with an in-depth evaluation of the vulnerability of others
biometrics modalities under spoofing attacks.
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Appendix A

Learning Algorithms

In this appendix, we present more details of the algorithms SVM and PLS. In the next
two sections, the boldface italic lowercase letters represent vectors, boldface uppercase
letters are matrices, and scalar variables are written with letters in italics.

A.1 SVM Algorithm
The SVM is a learning algorithm [16] used to find an optimal hyperplane that separates the
input data into classes. The SVM is supported by the statistical learning theory [57] and
has been used in several applications due to great generalization obtained for classifiers
constructed with this algorithm.

In this section, we present the basic mathematical foundations of the SVM to the linear
case. The explanations below about the SVM was based on the works [11,32,38,49]. More
details about this algorithm for both the linear and nonlinear cases can be found in these
tutorials.

We consider linear binary machines trained on a separable data set T = {(xi, yi); i =
1, · · · , n}, (xi, yi) ∈ Rd × Y , Y = {−1,+1}. Suppose we have some hyperplane which
separates the positive from the negative samples as Figure A.1 depicts. The points x
which lie on the hyperplane satisfy the equation w · x + b = 0, in that w is normal to the
hyperplane, | − b|/||w|| is the perpendicular distance from the hyperplane to the origin,
with b ∈ R and ||w|| the Euclidean norm of w.

Let d+ be the shortest distance from the separating hyperplane to the closet positive
sample and d− be the shortest distance from the separating hyperplane to the closet
negative sample, we can define the margin of a separating hyperplane as d = d+ + d−.
Basically, the SVM algorithm looks for the separating hyperplane with largest margin,
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that is done as follow. Suppose that all the training data satisfy the following constraints:

xi ·w + b ≥ +1 for yi = +1 (A.1)
xi ·w + b ≤ −1 for yi = −1 (A.2)

Combining the inequalities A.1 and A.2 we have:

yi(xi ·w + b)− 1 ≥ 0 ∀(xi, yi) ∈ T (A.3)

Now consider the points for which the equality in Equation A.1 is satisfied. The points
which lie on the hyperplane H1: xi ·w + b = 1 with normal w and perpendicular distance
from the origin |1− b|/||w||. Similarly, the points for which the equality in Equation A.2
which lie on the hyperplane H2: xi ·w + b = −1, with normal again w, and perpendicular
distance from the origin | − 1 − b|/||w||. Hence d+ = d− = 1/||w|| and the margin is
simply 2/||w||. This value distance is obtained by projecting (x1−x2) in the direction of
w, perpendicular to the hyperplane w · xi + b = 0 as formalized in Equation A.4. Note
that H1 and H2 are parallel and that no training points fall between them.

(x1 − x2)
(

w
||w||

· (x1 − x2)
||x1 − x2||

)
(A.4)

Hence w ·x1 + b = 1 and w ·x2 + b = −1, the difference between these equations gives
us w · (x1 − x2) = 2. Replacing this value in Equation A.4, we have:

2
||w||

· (x1 − x2)
||x1 − x2||

= 2
||w||

(A.5)

We can find the pair of hyperplanes which gives the maximum margin by minimizing
||w||2. This can be formulated as a quadratic optimization problem

min
w,b

L(w) = 1
2 ||w||

2 (A.6)

subject to constraints A.3. Thus, we expect the solution for a typical two dimensional
case to have the form shown in Figure A.1. Those training points for which the equality in
Equation A.3 is satisfied, and whose removal would change the solution found, are called
support vectors and they are highlighted with a extra circles in Figure A.1.

We will now switch to a Lagrangian formulation of the problem and there are two
reasons for doing this. The first is that the constraints A.3 will be replaced by constraints
on the Lagrange multipliers themselves, which is much easier to solve. The second is that
in this reformulation of the problem, the training data will only appear in the form of dot
products between vectors and this is a important property because allows to generalize
the procedure to the nonlinear case.
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wH1: w . x + b = 1

d

H2: w . x + b = -1

w . x + b = 0

x2 x3

x1

x2

x1

|-b|
||w||

d+

d- d-

Figure A.1: Considering a simple binary classification problem that consist in separates
balls from triangles. The optimal hyperplane is represented by solid line and there is a
weight vector w and a threshold b such that yi · ((w · xi) > 0. Rescaling w and b such
that the points closest to the hyperplane satisfy the equation |(w ·xi) + b| = 1, we obtain
a form (w, b) of the hyperplane with yi((w · xi) + b) ≥ 1. Image adapted from [11].

Thus, we introduce positive Lagrange multipliers αi ≥ 0, i = 1, · · · , n, one for each
of the inequality constraints A.3. Recall that the rule is that for constraints of the form
ci ≥ 0, the constraint equations are multiplied by positive Lagrange multipliers and
subtracted from the objective function, to form the Lagrangian. For equality constraints,
the Lagrange multipliers are unconstrained. This give us the following Lagrangian:

LP (w, b,α) = 1
2 ||w||

2 −
n∑
i=1

αiyi(xi ·w + b) +
n∑
i=1

αi (A.7)

The task now is to minimize Eq. A.7 with respect to w, b and to maximize it with
respect to α. We have the following saddle point equations, at the optimal point:

∂LP
∂b

(w, b,α) = 0 and ∂LP
∂w

(w, b,α) = 0 (A.8)
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leading to

w =
∑
i

αiyixi (A.9)∑
i

αiyi = 0. (A.10)

By replacing A.9 and A.10 into the Lagrangian A.7, one eliminates the primal variables
w and b, arriving at the so-called dual optimization problem, which is the problem that
one usually solves in practice:

max
α

LD(w) =
n∑
i

αi −
n∑

i,j=1
αiαjyiyjxi · xj (A.11)

subject to constraints

αi ≥ 0, i = 1, · · · , n (A.12)
n∑
i=1

αiyi = 0. (A.13)

Note that we have now given the Lagrangian different labels (P for primal, D for dual)
to emphasize that the two formulations are different: LP and LD is constructed from
the same objective function but with different constraints; and the solution is found by
minimizing LP or by maximizing LD . The dual form have constraints simpler than primal
and allows the representation of the optimization problem in terms of inner production
between data.

Support vector training therefore amounts to maximizing LD with respect to the αi,
subject to constraints A.12 and A.13. There is a Lagrange multiplier αi for every training
point, and in the solution, those points for which αi > 0 are called Support Vectors (SVs),
and lie on one of the hyperplanes H1, H2 and all other training points have αi = 0. For
the SVM, the support vectors are the critical elements of the training set. They lie closest
to the decision boundary; if all other training points were removed (or moved around, but
so as not to cross H1 or H2 ), and training was repeated, the same separating hyperplane
would be found.

Let α∗ the solution of the dual problem and w∗ and b∗ the solutions of the primal form.
Obtained the values of α∗, w∗ can be determined by equation A.9. The parameter b∗ is
defined by α∗ and Kühn-Tucker constraints, from the theory of constrained optimization
and that must be satisfied at the optimal point. For the dual problem formulated has [32]:

α∗i (yi(w∗ · xi + b∗)− 1) = 0,∀i = 1, · · · , n (A.14)

The b∗ parameter value is calculated from the SVs and the conditions shown in Equa-
tion A.14. For this, we compute the average shown in Equation A.15 for every xj such



A.2. PLS Algorithm 54

that αj > 0. In this equation, S is the set of SVs and |S| denotes its cardinality.

b∗ = 1
|S|

∑
xj∈S

1
yj
−w∗ · xj (A.15)

Replacing w∗ by Equation A.9 we have

b∗ = 1
|S|

∑
xj∈S

 1
yj
−
∑

xi∈S
α∗i yixi · xj

 (A.16)

To test new sample we simply determine on which side of the decision boundary a
given test pattern x lies and assign the corresponding class label by Equation A.17

g(x) = sgn
∑

xi∈S
α∗i yixi · x + b∗

 (A.17)

A.2 PLS Algorithm
PLS regression method [59, 60] is based on the linear transformation of a large number
of descriptors to a new space based on a small number of orthogonal projection vectors.
In other words, the projection vectors are mutually independent linear combinations of
the of independent variables. These vectors are chosen to provide maximum correlation
with the dependent variables. When the PLS is used to model a classification problem,
the independent variables are the descriptors and the dependent variables are the labels
of the data belonging to the training set. Next, we give a brief description of the PLS for
linear case. The explanation below about the PLS was based on the works [1, 6, 23, 47].
More details about this method can be found in these tutorials.

Consider the general case of a linear PLS algorithm to model the relation between two
data sets, X and Y. Denote by X ⊂ RN an N -dimensional space of variables representing
the first set and similarly by Y ⊂ RM a space representing the second set of variables.
The PLS algorithm models the relations between X and Y by means of score vectors.
Considering n data samples from each set of variables, PLS decomposes the (n × N)
matrix of zero-mean variables X and the (n×M) matrix of zero-mean variables Y using
the Equation A.18

X = TPT + E
Y = UQT + F

(A.18)

where the T, U are (n× p) matrices of the p extracted score vectors (latent vectors), the
(N × p) matrix P and the (M × p) matrix Q are matrices of loadings and the (n × N)
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matrix E and the (n × M) matrix F are the matrices of residuals. There is several
ways to be obtain the latent vectors, and that a common algorithm used for this is the
nonlinear iterative partial least squares (NIPALS) algorithm [58], which was used in this
dissertation. This algorithm finds weight vectors w, c such that

[cov(t,u)]2 = [cov(Xw,Yc)]2 = max|r|=|s|=1[cov(Xr,Ys)]2 (A.19)

where cov(t,u) = tTu/n denotes the sample covariance between the score vectors t and
u. The NIPALS algorithm starts with random initialization of the Y-space score vector
u and repeats the sequence of steps describe in Algorithm 1.

Algorithm 1 NIPALS
Require: X, Y, u

while (t > δ) do
w = XTu/(uTu)
||w|| → 1
t = Xw
c = YT t/(tT t)
||c|| → 1
u = Yc

end while

PLS is an interactive process. After the NIPALS algorithm stop, that is, when t has
converged, it is compute the value of b which is used to predict Y from t as b = tTu, and
compute the factor loadings for X as p = XT t. Now subtract the effect of t from both
X and Y as follows X = X− tpT and Y = Y− btcT . The vectors t, u, w, c, and p are
then stored in the corresponding matrices, and the scalar b is stored as a diagonal element
of B. The sum of squares of X and Y explained by the latent vector is computed as pTp
and b2, respectively, and the proportion of variance explained is obtained by dividing the
explained sum of squares by the corresponding total sum of squares. If X is a null matrix,
then the whole set of latent vectors has been found, otherwise the process can be started
again from Algorithm 1.

The dependent variables are estimated as Y = TBCT = XBPLS with BPLS =
(PT+)BCT (where PT+ is the pseudo-inverse of P T , B is a diagonal matrix with the
regression weights as diagonal elements and C is the weight matrix of the dependent
variables, and the columns of T are the latent vectors.


