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Abstract—Biometrics systems have significantly improved per-
son identification and authentication, playing an important role
in personal, national, and global security. However, these systems
might be deceived (or “spoofed”) and, despite the recent advances
in spoofing detection, current solutions often rely on domain
knowledge, specific biometric reading systems, and attack types.
We assume a very limited knowledge about biometric spoofing
at the sensor to derive outstanding spoofing detection systems
for iris, face, and fingerprint modalities based on two deep
learning approaches. The first approach consists of learning
suitable convolutional network architectures for each domain,
while the second approach focuses on learning the weights of
the network via back-propagation. We consider nine biometric
spoofing benchmarks — each one containing real and fake
samples of a given biometric modality and attack type — and
learn deep representations for each benchmark by combining and
contrasting the two learning approaches. This strategy not only
provides better comprehension of how these approaches interplay,
but also creates systems that exceed the best known results in
eight out of the nine benchmarks. The results strongly indicate
that spoofing detection systems based on convolutional networks
can be robust to attacks already known and possibly adapted,
with little effort, to image-based attacks that are yet to come.

Index Terms—Deep Learning, Convolutional Networks, Hyper-
parameter Architecture Optimization, Filter Weights Learning,
Back-propagation, Spoofing Detection.

I. INTRODUCTION

B IOMETRICS human characteristics and traits can suc-

cessfully allow people identification and authentication

and have been widely used for access control, surveillance,

and also in national and global security systems [1]. In the

last few years, due to the recent technological improvements

for data acquisition, storage and processing, and also the

scientific advances in computer vision, pattern recognition,

and machine learning, several biometric modalities have been

largely applied to person recognition, ranging from traditional

fingerprint to face, to iris, and, more recently, to vein and blood
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flow. Simultaneously, various spoofing attacks techniques have

been created to defeat such biometric systems.

There are several ways to spoof a biometric system [2], [3].

Indeed, previous studies show at least eight different points

of attack [4], [5] that can be divided into two main groups:

direct and indirect attacks. The former considers the possi-

bility to generate synthetic biometric samples, and is the first

vulnerability point of a biometric security system acting at the

sensor level. The latter includes all the remaining seven points

of attacks and requires different levels of knowledge about the

system, e.g., the matching algorithm used, the specific feature

extraction procedure, database access for manipulation, and

also possible weak links in the communication channels within

the system.

Given that the most vulnerable part of a system is its acqui-

sition sensor, attackers have mainly focused on direct spoofing.

This is possibly because a number of biometric traits can be

easily forged with the use of common apparatus and consumer

electronics to imitate real biometric readings (e.g., stampers,

printers, displays, audio recorders). In response to that, several

biometric spoofing benchmarks have been recently proposed,

allowing researchers to make steady progress in the conception

of anti-spoofing systems. Three relevant modalities in which

spoofing detection has been investigated are iris, face, and

fingerprint. Benchmarks across these modalities usually share

the common characteristic of being image- or video-based.

In the context of irises, attacks are normally performed

using printed iris images [6] or, more interestingly, cosmetic

contact lenses [7], [8]. With faces, impostors can present to

the acquisition sensor a photography, a digital video [9], or

even a 3D mask [10] of a valid user. For fingerprints, the

most common spoofing method consists of using artificial

replicas [11] created in a cooperative way, where a mold of

the fingerprint is acquired with the cooperation of a valid user

and is used to replicate the user’s fingerprint with different

materials, including gelatin, latex, play-doh or silicone.

The success of an anti-spoofing method is usually connected

to the modality for which it was designed. In fact, such systems

often rely on expert knowledge to engineer features that are

able to capture acquisition telltales left by specific types of

attacks. However, the need of custom-tailored solutions for the

myriad possible attacks might be a limiting constraint. Small

changes in the attack could require the redesign of the entire

system.

In this paper, we do not focus on custom-tailored solutions.

Instead, inspired by the recent success of Deep Learning
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Fig. 1. Schematic diagram detailing how anti-spoofing systems are built from
spoofing detection benchmarks. Architecture optimization (AO) is shown on
the left and filter optimization (FO) on the right. In this work, we not only
evaluate AO and FO in separate, but also in combination, as indicated by the
crossing dotted lines.

in several vision tasks [12], [13], [14], [15], [16], and by

the ability of the technique to leverage data, we focus on

two general-purpose approaches to build image-based anti-

spoofing systems with convolutional networks for several

attack types in three biometric modalities, namely iris, face,

and fingerprint. The first technique that we explore is hyperpa-

rameter optimization of network architectures [17], [18] that

we henceforth call architecture optimization, while the second

lies at the core of convolutional networks and consists of learn-

ing filter weights via the well-known back-propagation [19]

algorithm, hereinafter referred to as filter optimization.

Fig. 1 illustrates how such techniques are used. The archi-

tecture optimization (AO) approach is presented on the left

and is highlighted in blue while the filter optimization (FO)

approach is presented on the right and is highlighted in red.

As we can see, AO is used to search for good architectures of

convolutional networks in a given spoofing detection problem

and uses convolutional filters whose weights are set at random

in order to make the optimization practical. This approach

assumes little a priori knowledge about the problem, and is

an area of research in deep learning that has been successful

in showing that the architecture of convolutional networks,

by themselves, is of extreme importance to performance [17],

[18], [20], [21], [22], [23]. In fact, the only knowledge AO

assumes about the problem is that it is approachable from a

computer vision perspective.

Still in Fig 1, FO is carried out with back-propagation

in a predefined network architecture. This is a longstanding

approach for building convolutional networks that has recently

enabled significant strides in computer vision, specially be-

cause of an understanding of the learning process, and the

availability of plenty of data and processing power [13], [16],

[24]. Network architecture in this context is usually determined

by previous knowledge of related problems.

In general, we expect AO to adapt the architecture to the

problem in hand and FO to model important stimuli for

discriminating fake and real biometric samples. We evaluate

AO and FO not only in separate, but also in combination,

i.e., architectures learned with AO are used for FO as well

as previously known good performing architectures are used

with random filters. This explains the crossing dotted lines in

the design flow of Fig 1.

As our experiments show, the benefits of evaluating AO

and FO apart and later combining them to build anti-spoofing

systems are twofold. First, it enables us to have a better

comprehension of the interplay between these approaches,

something that has been largely underexplored in the literature

of convolutional networks. Second, it allows us to build

systems with outstanding performance in all nine publicly

available benchmarks considered in this work.

The first three of such benchmarks consist of spoofing at-

tempts for iris recognition systems, Biosec [25], Warsaw [26],

and MobBIOfake [27]. Replay-Attack [9] and 3DMAD [10]

are the benchmarks considered for faces, while Biometrika,

CrossMatch, Italdata, and Swipe are the fingerprint bench-

marks here considered, all them recently used in the 2013

Fingerprint Liveness Detection Competition (LivDet’13) [11].

Results outperform state-of-the-art counterparts in eight of

the nine cases and observe a balance in terms of performance

between AO and FO, with one performing better than the other

depending on the sample size and problem difficulty. In some

cases, we also show that when both approaches are combined,

we can obtain performance levels that neither one can obtain

by itself. Moreover, by observing the behaviour of AO and

FO, we take advantage of domain knowledge to propose a

single new convolutional architecture that push performance

in five problems even further, sometimes by a large margin,

as in CrossMatch (68.80% v. 98.23%).

The experimental results strongly indicate that convolutional

networks can be readily used for robust spoofing detection.

Indeed, we believe that data-driven solutions based on deep

representations might be a valuable direction to this field of

research, allowing the construction of systems with little effort

even to image-based attack types yet to come.

We organized the remainder of this work into five sections.

Section II presents previous anti-spoofing systems for the three

biometric modalities covered in this paper, while Section III

presents the considered benchmarks. Section IV describes the

methodology adopted for architecture optimization (AO) and

filter optimization (FO) while Section V presents experiments,

results, and comparisons with state-of-the-art methods. Finally,

Section VI concludes the paper and discusses some possible

future directions.

II. RELATED WORK

In this section, we review anti-spoofing related work for iris,

face, and fingerprints, our focus in this paper.

A. Iris Spoofing

Daugman [28, Section 8 – Countermeasures against Sub-

terfuge]1 was one of the first authors to discuss the feasibility

1It also appears in a lecture of Daugman at IBC 2004 [29].
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of some attacks on iris recognition systems. The author

proposed the use of Fast Fourier Transform to verify the high

frequency spectral magnitude in the frequency domain.

The solutions for iris liveness detection available in the

literature range from active solutions relying on special ac-

quisition hardware [30], [31], [32] to software-based solutions

relying on texture analysis of the effects of an attacker using

color contact lenses with someone else’s pattern printed onto

them [33]. Software-based solutions have also explored the

effects of cosmetic contact lenses [34], [35], [7], [8]; pupil

constriction [36]; and multi biometrics of electroencephalo-

gram (EEG) and iris together [37], among others.

Galbally et al. [38] investigated 22 image quality measures

(e.g., focus, motion, occlusion, and pupil dilation). The best

features are selected through sequential floating feature selec-

tion (SFFS) [39] to feed a quadratic discriminant classifier.

The authors validated the work on the BioSec [40], [25]

benchmark. Sequeira et al. [41] also explored image quality

measures [38] and three classification techniques validating the

work on the BioSec [40], [25] and Clarkson [42] benchmarks

and introducing the MobBIOfake benchmark comprising 800

iris images from the MobBIO multimodal database [27].

Sequeira et al. [43] extended upon previous works also

exploring quality measures. They first used a feature selection

step on the features of the studied methods to obtain the “best

features” and then used well-known classifiers for the decision-

making. In addition, they applied iris segmentation [44] to ob-

taining the iris contour and adapted the feature extraction pro-

cesses to the resulting non-circular iris regions. The validation

considered five datasets (BioSec [40], [25], MobBIOfake [27],

Warsaw [26], Clarkson [42] and NotreDame [45].

Textures have also been explored for iris liveness detection.

In the recent MobILive2 [6] iris spoofing detection competi-

tion, the winning team explored three texture descriptors: Lo-

cal Phase Quantization (LPQ) [46], Binary Gabor Pattern [47],

and Local Binary Pattern (LBP) [48].

Analyzing printing regularities left in printed irises, Cza-

jka [26] explored some peaks in the frequency spectrum were

associated to spoofing attacks. For validation, the authors

introduced the Warsaw dataset containing 729 fake images

and 1,274 images of real eyes. In [42], The First Intl. Iris

Liveness Competition in 2013, the Warsaw database was also

evaluated, however, the best reported result achieved 11.95%
of FRR and 5.25% of FAR by the University of Porto team.

Sun et al. [49] recently proposed a general framework

for iris image classification based on a Hierarchical Visual

Codebook (HVC). The HVC encodes the texture primitives

of iris images and is based on two existing bag-of-words

models. The method achieved state-of-the-art performance for

iris spoofing detection, among other tasks.

In summary, iris anti-spoofing methods have explored hard-

coded features through image-quality metrics, texture patterns,

bags-of-visual-words and noise artifacts due to the recapturing

process. The performance of such solutions vary significantly

from dataset to dataset. Differently, here we propose the

automatically extract vision meaningful features directly from

2MobLive 2014, Intl. Joint Conference on Biometrics (IJCB).

the data using deep representations.

B. Face Spoofing

We can categorize the face anti-spoofing methods into four

groups [50]: user behavior modeling, methods relying on

extra devices [51], methods relying on user cooperation and,

finally, data-driven characterization methods. In this section,

we review data-driven characterization methods proposed in

literature, the focus of our work herein.

Määttä et al. [52] used LBP operator for capturing printing

artifacts and micro-texture patterns added in the fake biometric

samples during acquisition. Schwartz et al. [50] explored color,

texture, and shape of the face region and used them with

Partial Least Square (PLS) classifier for deciding whether a

biometric sample is fake or not. Both works validated the

methods with the Print Attack benchmark [53]. Lee et al. [54]

also explored image-based attacks and proposed the frequency

entropy analysis for spoofing detection.

Pinto et al. [55] pioneered research on video-based face

spoofing detection. They proposed visual rhythm analysis to

capture temporal information on face spoofing attacks.

Mask-based face spoofing attacks have also been considered

thus far. Erdogmus et al. [56] dealt with the problem through

Gabor wavelets: local Gabor binary pattern histogram se-

quences [57] and Gabor graphs [58] with a Gabor-phase based

similarity measure [59]. Erdogmus & Marcel [10] introduced

the 3D Mask Attack database (3DMAD), a public available

3D spoofing database, recorded with Microsoft Kinect sensor.

Kose et al. [60] demonstrated that a face verification system

is vulnerable to mask-based attacks and, in another work, Kose

et al. [61] evaluated the anti-spoofing method proposed by

Määttä et al. [52] (originally proposed to detect photo-based

spoofing attacks). Inspired by the work of Tan et al. [62], Kose

et al. [63] evaluated a solution based on reflectance to detect

attacks performed with 3D masks.

Finally, Pereira et al. [64] proposed a score-level fusion

strategy in order to detect various types of attacks. In a follow-

up work, Pereira et al. [65] proposed an anti-spoofing solution

based on the dynamic texture, a spatio-temporal version of the

original LBP. Results showed that LBP-based dynamic texture

description has a higher effectiveness than the original LBP.

In summary, similarly to iris spoofing detection methods,

the available solutions in the literature mostly deal with the

face spoofing detection problem through texture patterns (e.g.,

LBP-like detectors), acquisition telltales (noise), and image

quality metrics. Here, we approach the proplem by extracting

meaningful features directly from the data regardless of the

input type (image, video, or 3D masks).

C. Fingerprint Spoofing

We can categorize fingerprint spoofing detection methods

roughly into two groups: hardware-based (exploring extra

sensors) and software-based solutions (relying only on the

information acquired by the standard acquisition sensor of the

authentication system) [11].

Galbally et al. [66] proposed a set of feature for finger-

print liveness detection based on quality measures such as
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ridge strength or directionality, ridge continuity, ridge clarity,

and integrity of the ridge-valley structure. The validation

considered the three benchmarks used in LivDet 2009 –

Fingerprint competition [67] captured with different optical

sensors: Biometrika, CrossMatch, and Identix. Later work [68]

explored the method in the presence of gummy fingers.

Ghiani et al. [69] explored LPQ [46], a method for repre-

senting all spectrum characteristics in a compact feature repre-

sentation form. The validation considered the four benchmarks

used in the LivDet 2011 – Fingerprint competition [70].

Gragnaniello et al. [71] explored the Weber Local Image

Descriptor (WLD) for liveness detection, well suited to high-

contrast patterns such as the ridges and valleys of fingerprints

images. In addition, WLD is robust to noise and illumination

changes. The validation considered the LivDet 2009 and

LivDet 2011 – Fingerprint competition datasets.

Jia et al. [72] proposed a liveness detection scheme based

on Multi-scale Block Local Ternary Patterns (MBLTP). Differ-

ently of the LBP, the Local Ternary Pattern operation is done

on the average value of the block instead of the pixels being

more robust to noise. The validation considered the LivDet

2011 – Fingerprint competition benchmarks.

Ghiani et al. [73] explored Binarized Statistical Image Fea-

tures (BSIF) originally proposed by Kannala et al. [74]. The

BSIF was inspired in the LBP and LPQ methods. In contrast

to LBP and LPQ approaches, BSIF learns a filter set by using

statistics of natural images [75]. The validation considered the

LivDet 2011 – Fingerprint competition benchmarks.

Recent results reported in the LivDet 2013 Fingerprint

Liveness Detection Competition [73] show that fingerprint

spoofing attack detection task is still an open problem with

results still far from a perfect classification rate.

We notice that most of the groups approach the problem

with hard-coded features sometimes exploring quality metrics

related to the modality (e.g., directionality and ridge strength),

general texture patterns (e.g., LBP-, MBLTP-, and LPQ-based

methods), and filter learning through natural image statistics.

This last approach seems to open a new research trend, which

seeks to model the problem learning features directly from

the data. We follow this approach in this work, assuming little

a priori knowledge about acquisition-level biometric spoofing

and exploring deep representations of the data.

D. Multi-modalities

Recently, Galbally et al. [76] proposed a general approach

based on 25 image quality features to detect spoofing attempts

in face, iris, and fingerprint biometric systems. Our work is

similar to theirs in goals, but radically different with respect

to the methods. Instead of relying on prescribed image quality

features, we build features that would be hardly thought by a

human expert with AO and FO. Moreover, here we evaluate

our systems in more recent and updated benchmarks.

III. BENCHMARKS

In this section, we describe the benchmarks (datasets) that

we consider in this work. All them are publicly available upon

request and suitable for evaluating countermeasure methods to

iris, face and fingerprint spoofing attacks. Table I shows the

major features of each one and in the following we describe

their details.

A. Iris Spoofing Benchmarks

1) Biosec: This benchmark was created using iris images

from 50 users of the BioSec [25]. In total, there are 16 images

for each user (2 sessions × 2 eyes × 4 images), totalizing 800
valid access images. To create spoofing attempts, the original

images from Biosec were preprocessed to improve quality and

printed using an HP Deskjet 970cxi and an HP LaserJet 4200L

printers. Finally, the iris images were recaptured with the same

iris camera used to capture the original images.

2) Warsaw: This benchmark contains 1274 images of 237
volunteers representing valid accesses and 729 printout images

representing spoofing attempts, which were generated by using

two printers: (1) a HP LaserJet 1320 used to produce 314 fake

images with 600 dpi resolution, and (2) a Lexmark C534DN

used to produce 415 fake images with 1200 dpi resolution.

Both real and fake images were captured by an IrisGuard

AD100 biometric device.

3) MobBIOfake: This benchmark contains live iris images

and fake printed iris images captured with the same acquisition

sensor, i.e., a mobile phone. To generate fake images, the

authors first performed a preprocessing in the original images

to enhance the contrast. The preprocessed images were then

printed with a professional printer on high quality photo-

graphic paper.

B. Video-based Face Spoofing Benchmarks

1) Replay-Attack: This benchmark contains short video

recordings of both valid accesses and video-based attacks of

50 different subjects. To generate valid access videos, each

person was recorded in two sessions in a controlled and in an

adverse environment with a regular webcam. Then, spoofing

attempts were generated using three techniques: (1) print

attack, which presents to the acquisition sensor hard copies of

high-resolution digital photographs printed with a Triumph-

Adler DCC 2520 color laser printer; (2) mobile attack, which

presents to the acquisition sensor photos and videos taken with

an iPhone using the iPhone screen; and (3) high-definition

attack, in which high resolution photos and videos taken with

an iPad are presented to the acquisition sensor using the iPad

screen.

2) 3DMAD: This benchmark consists of real videos and

fake videos made with people wearing masks. A total of

17 different subjects were recorded with a Microsoft Kinect

sensor, and videos were collected in three sessions. For each

session and each person, five videos of 10 seconds were

captured. The 3D masks were produced by ThatsMyFace.com

using one frontal and two profile images of each subject. All

videos were recorded by the same acquisition sensor.

C. Fingerprint Spoofing Benchmarks

1) LivDet2013: This dataset contains four sets of real

and fake fingerprint readings performed in four acquisition
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TABLE I
MAIN FEATURES OF THE BENCHMARKS CONSIDERED HEREIN.

Modality Benchmark/Dataset Color
Dimension # Training # Testing # Development

cols× rows Live Fake Total Live Fake Total Live Fake Total

Iris
Warsaw [26] No 640× 480 228 203 431 624 612 1236
Biosec [25] No 640× 480 200 200 400 600 600 1200
MobBIOfake [27] Yes 250× 200 400 400 800 400 400 800

Face
Replay-Attack [77] Yes 320× 240 600 3000 3600 4000 800 4800 600 3000 3600
3dMad [78] Yes 640× 480 350 350 700 250 250 500 250 250 500

Fingerprint

Biometrika [11] No 312× 372 1000 1000 2000 1000 1000 2000
CrossMatch [11] No 800× 750 1250 1000 2250 1250 1000 2250
Italdata [11] No 640× 480 1000 1000 2000 1200 1000 2000
Swipe [11] No 208× 1500 1221 979 2200 1153 1000 2153

sensors: Biometrika FX2000, Italdata ET10, Crossmatch L

Scan Guardian, and Swipe. For a more realistic scenario, fake

samples in Biometrika and Italdata were generated without

user cooperation, while fake samples in Crossmatch and Swipe

were generated with user cooperation. Several materials for

creating the artificial fingerprints were used, including gelatin,

silicone, latex, among others.

D. Remark

Images found in these benchmarks can be observed in Fig. 5

of Section V. As we can see, variability exists not only across

modalities, but also within modalities. Moreover, it is rather

unclear what features might discriminate real from spoofed

images, which suggests that the use of a methodology able to

use data to its maximum advantage might be a promising idea

to tackle such set of problems in a principled way.

IV. METHODOLOGY

In this section, we present the methodology for architecture

optimization (AO) and filter optimization (FO) as well as

details about how benchmark images are preprocessed, how

AO and FO are evaluated across the benchmarks, and how

these methods are implemented.

A. Architecture Optimization (AO)

Our approach for AO builds upon the work of Pinto et

al. [17] and Bergstra et al. [23], i.e., fundamental, feedforward

convolutional operations are stacked by means of hyperparam-

eter optimization, leading to effective yet simple convolutional

networks that do not require expensive filter optimization

and from which prediction is done by linear support vector

machines (SVMs).

Operations in convolutional networks can be viewed as lin-

ear and non-linear transformations that, when stacked, extract

high level representations of the input. Here we use a well-

known set of operations called (i) convolution with a bank

of filters, (ii) rectified linear activation, (iii) spatial pooling,

and (iv) local normalization. Appendix A provides a detailed

definition of these operations.

We denote as layer the combination of these four operations

in the order that they appear in the left panel of Fig. 2.

Local normalization is optional and its use is governed by an

additional “yes/no” hyperparameter. In fact, there are other six

hyperparameters, each of a particular operation, that have to

be defined in order to instantiate a layer. They are presented in

the lower part of the left panel in Fig. 2 and are in accordance

to the definitions of Appendix A.

Considering one layer and possible values of each hyperpa-

rameter, there are over 3,000 possible layer architectures, and

this number grows exponentially with the number of layers,

which goes up to three in our case (Fig. 2 right panel). In

addition, there are network-level hyperparameters, such as the

size of the input image, that expand possibilities to a myriad

potential architectures.

The overall set of possible hyperparameter values is called

search space, which in this case is discrete and contains vari-

ables that are only meaningful in combination with others. For

example, hyperparameters of a given layer are just meaningful

if the candidate architecture has actually that number of layers.

In spite of the intrinsic difficulty in optimizing architectures

in this space, random search has played and important role in

problems of this type [17], [18] and it is the strategy of our

choice due to its effectiveness and simplicity.

We can see in Fig. 2 that a three-layered network has a total

of 25 hyperparameters, seven per layer and four at network

level. They are all defined in Appendix A with the exception

of input size, which seeks to determine the best size of the

image’s greatest axis (rows or columns) while keeping its

aspect ratio. Concretely, random search in this paper can be

described as follows:

1) Randomly — and uniformly, in our case — sample values

from the hyperparameter search space;

2) Extract features from real and fake training images with

the candidate architecture;

3) Evaluate the architecture according to an optimization

objective based on linear SVM scores;

4) Repeat steps 1–3 until a termination criterion is met;

5) Return the best found convolutional architecture.

Even though there are billions of possible networks in the

search space (Fig. 2), it is important to remark that not all

candidate networks are valid. For example, a large number of

candidate architectures (i.e., points in the search space) would

produce representations with spatial resolution smaller than

one pixel. Hence, they are naturally unfeasible. Additionally,

in order to avoid very large representations, we discard in

advance candidate architectures whose intermediate layers
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operation hyperparameter values

convolution filter size {3, 5, 7, 9}

number of filters {32, 64, 128, 256}

activation —

pooling size {3, 5, 7, 9}

stride {1, 2, 4, 8}

strength {1, 2, 10}

local norm. apply (yes/no) {yes, no}

size {3, 5, 7, 9}

hyperparameter values

input size {64, 128, 256, original}

local norm. {yes, no}

local norm. size {3,5,7,9}

depth {1, 2, 3}

local norm.

choose

choose

layer 1 layer 1 layer 1

layer 2 layer 2

layer 3

linear SVMlinear SVM linear SVM

real and fake biometric images

loss of candidate model

convolution

activation

pooling

local norm.

choose

networklayer

Fig. 2. Schematic diagram for architecture optimization (AO) illustrating how
operations are stacked in a layer (left) and how the network is instantiated
and evaluated according to possible hyperparameter values (right). Note
that a three-layered convolutional network of this type has a total of 25
hyperparameters governing both its architecture and its overall behaviour
through a particular instance of stacked operations.

produce representations of over 600K elements or whose

output representation has over 30K elements.

Filter weights are randomly generated for AO. This strategy

has been successfully used in the vision literature [17], [20],

[21], [79] and is essential to make AO practical, avoiding the

expensive filter optimization (FO) part in the evaluation of

candidate architectures. We sample weights from a uniform

distribution U(0, 1) and normalize the filters to zero mean

and unit norm in order to ensure that they are spread over the

unit sphere. When coupled with rectified linear activation (Ap-

pendix A), this sampling enforces sparsity in the network by

discarding about 50% of the expected filter responses, thereby

improving the overall robustness of the feature extraction.

A candidate architecture is evaluated by first extracting deep

representations from real and fake images and later training

hard-margin linear SVMs (C=105) on these representations.

We observed that the sensitivity of the performance measure

was saturating with traditional 10-fold cross validation (CV)

in some benchmarks. Therefore, we opted for a different

validation strategy. Instead of training on nine folds and

validating on one, we train on one fold and validate on nine.

Precisely, the optimization objective is the mean detection

accuracy obtained from this adapted cross-validation scheme,

which is maximized during the optimization.

For generating the 10 folds, we took special care in putting

all samples of an individual in the same fold to enforce robust-

ness to cross-individual spoofing detection in the optimized

architectures. Moreover, in benchmarks where we have more

than one attack type (e.g., Replay-Attack and LivDet2013, see

Section III), we evenly distributed samples of each attack type

across all folds in order to enforce that candidate architectures

are also robust to different types of attack.
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Fig. 3. Architecture of convolutional network found in the Cuda-convnet
library [80] and here used as reference for filter optimization (cf10-11,
top). Proposed network architecture extending upon cf10-11 to better suiting
spoofing detection problems (spoofnet, bottom). Both architectures are typical
examples where domain knowledge has been incorporated for increased
performance.

Finally, the termination criterion of our AO procedure

simply consists of counting the number of valid candidate

architectures and stopping the optimization when this number

reaches 2,000.

B. Filter Optimization (FO)

We now turn our attention to a different approach for

tackling the problem. Instead of optimizing the architecture,

we explore the filter weights and how to learn them for better

characterizing real and fake samples. Our approach for FO

is at the origins of convolutional networks and consists of

learning filter weights via the well-known back-propagation

algorithm [19]. Indeed, due to a refined understanding of the

optimization process and the availability of plenty of data

and processing power, back-propagation has been the gold

standard method in deep networks for computer vision in the

last years [13], [24], [81].

For optimizing filters, we need to have an already defined

architecture. We start optimizing filters with a standard public

convolutional network and training procedure. This network is

available in the Cuda-convnet library [80] and is currently one

of the best performing architectures in CIFAR-10,3 a popular

computer vision benchmark in which such network achieves

11% of classification error. Hereinafter, we call this network

cuda-convnet-cifar10-11pct, or simply cf10-11.

Fig. 3 depicts the architecture of cf10-11 in the top panel

and is a typical example where domain knowledge has been

incorporated for increased performance. We can see it as

a three-layered network in which the first two layers are

convolutional, with operations similar to the operations used

in architecture optimization (AO). In the third layer, cf10-

11 has two sublayers of unshared local filtering and a final

3http://www.cs.toronto.edu/∼kriz/cifar.html



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, APRIL XXXX 7

fully-connected sublayer on top of which softmax regression

is performed. A detailed explanation of the operations in cf10-

11 can be found in [80].

In order to train cf10-11 in a given benchmark, we split the

training images into four batches observing the same balance

of real and fake images. After that, we follow a procedure

similar to the original4 for training cf10-11 in all benchmarks,

which can be described as follows:

1) For 100 epochs, train the network with a learning rate of

10−3 by considering the first three batches for training

and the fourth batch for validation;

2) For another 40 epochs, resume training now considering

all four batches for training;

3) Reduce the learning rate by a factor of 10, and train the

network for another 10 epochs;

4) Reduce the learning rate by another factor of 10, and

train the network for another 10 epochs.

After evaluating filter learning on the cf10-11 architecture,

we also wondered how filter learning could benefit from an

optimized architecture incorporating domain-knowledge of the

problem. Therefore, extending upon the knowledge obtained

with AO as well as with training cf10-11 in the benchmarks,

we derived a new architecture for spoofing detection that we

call spoofnet. Fig. 3 illustrates this architecture in the bottom

panel and has three key differences as compared to cf10-11.

First, it has 16 filters in the first layer instead of 64. Second,

operations in the second layer are stacked in the same order

that we used when optimizing architectures (AO). Third, we

removed the two unshared local filtering operations in the third

layer, as they seem inappropriate in a problem where object

structure is irrelevant.

These three modifications considerably dropped the number

of weights in the network and this, in turn, allowed us to

increase of size of the input images from 32×32 to 128×128.

This is the fourth and last modification in spoofnet, and we

believe that it might enable the network to be more sensitive

to subtle local patterns in the images.

In order to train spoofnet, the same procedure used to

train cf10-11 is considered except for the initial learning

rate, which is made 10−4, and for the number of epochs in

each step, which is doubled. These modifications were made

because of the decreased learning capacity of the network.

Finally, in order to reduce overfitting, data augmentation is

used for training both networks according to the procedure

of [13]. For cf10-11, five 24× 24 image patches are cropped

out from the 32× 32 input images. These patches correspond

to the four corners and central region of the original image,

and their horizontal reflections are also considered. Therefore,

ten training samples are generated from a single image. For

spoofnet, the procedure is the same except for the fact that

input images have 128 × 128 pixels and cropped regions are

of 112× 112 pixels. During prediction, just the central region

of the test image is considered.

4https://code.google.com/p/cuda-convnet/wiki/Methodology.

TABLE II
INPUT IMAGE DIMENSIONALITY AFTER BASIC PREPROCESSING ON FACE

AND FINGERPRINT IMAGES (HIGHLIGHTED). SEE SECTION IV-C FOR

DETAILS.

Modality Benchmark
Dimensions

columns× rows

Iris
Warsaw [26] 640× 480
Biosec [25] 640× 480
MobBIOfake [27] 250× 200

Face
Replay-Attack [77] 200× 200

3DMAD [78] 200× 200

Fingerprint

Biometrika [11] 312× 372

CrossMatch [11] 480× 675

Italdata [11] 384× 432

Swipe [11] 187× 962

C. Elementary Preprocessing

A few basic preprocessing operations were executed on face

and fingerprint images in order to properly learn representa-

tions for these benchmarks. This preprocessing led to images

with sizes as presented in Table II and are described in the

next two sections.

1) Face Images: Given that the face benchmarks considered

in this work are video-based, we first evenly subsample 10

frames from each input video. Then, we detect the face

position using Viola & Jones [82] and crop a region of

200× 200 pixels centered at the detected window.

2) Fingerprint Images: Given the diverse nature of images

captured from different sensors, here the preprocessing is

defined according to the sensor type.

(a) Biometrika: we cropped the central region of size in

columns and rows corresponding to 70% of the original

image dimensions.

(b) Italdata and CrossMatch: we cropped the central region

of size in columns and rows respectively corresponding to

60% and 90% of the original image columns and rows.

(c) Swipe: As the images acquired by this sensor contain a

variable number of blank rows at the bottom, the average

number of non-blank rows M was first calculated from

the training images. Then, in order to obtain images of

a common size with non-blank rows, we removed their

blank rows at the bottom and rescaled them to M rows.

Finally, we cropped the central region corresponding to

90% of original image columns and M rows.

The rationale for these operations is based on the observa-

tion that fingerprint images in LivDet2013 tend to have a large

portion of background content and therefore we try to discard

such information that could otherwise mislead the represen-

tation learning process. The percentage of cropped columns

and rows differs among sensors because they capture images

of different sizes with different amounts of background.

For architecture optimization (AO), the decision to use

image color information was made according to 10-fold vali-

dation (see Section IV-A), while for filter optimization (FO),

color information was considered whenever available for a

better approximation with the standard cf10-11 architecture.

Finally, images were resized to 32 × 32 or 128 × 128 to

be taken as input for the cf10-11 and spoofnet architectures,

respectively.
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D. Evaluation Protocol

For each benchmark, we learn deep representations from

their training images according to the methodology described

in Section IV-A for architecture optimization (AO) and in

Section IV-B for filter optimization (FO). We follow the

standard evaluation protocol of all benchmarks and evaluate

the methods in terms of detection accuracy (ACC) and half

total error rate (HTER), as these are the metrics used to

assess progress in the set of benchmarks considered herein.

Precisely, for a given benchmark and convolutional network

already trained, results are obtained by:

1) Retrieving prediction scores from the testing samples;

2) Calculating a threshold τ above which samples are pre-

dicted as attacks;

3) Computing ACC and/or HTER using τ and test predic-

tions.

The way that τ is calculated differs depending on whether

the benchmark has a development set or not (Table I). Both

face benchmarks have such a set and, in this case, we simply

obtain τ from the predictions of the samples in this set. Iris

and fingerprint benchmarks have no such a set, therefore τ
is calculated depending on whether the convolutional network

was learned with AO or FO.

In case of AO, we calculate τ by joining the predictions

obtained from 10-fold validation (see Section IV-A) in a single

set of positive and negative scores, and τ is computed as the

point that lead to an equal error rate (EER) on the score

distribution under consideration. In case of FO, scores are

probabilities and we assume τ = 0.5. ACC and HTER are

then trivially computed with τ on the testing set.

It is worth noting that the Warsaw iris benchmark provides

a supplementary testing set that here we merge with the

original testing set in order to replicate the protocol of [42].

Moreover, given face benchmarks are video-based and that in

our methodology we treat them as images (Section IV-C), we

perform a score-level fusion of the samples from the same

video according to the max rule [83]. This fusion is done

before calculating τ .

E. Implementation

Our implementation for architecture optimization (AO) is

based on Hyperopt-convnet [84] which in turn is based on

Theano [85]. LibSVM [86] is used for learning the linear clas-

sifiers via Scikit-learn.5 The code for feature extraction runs on

GPUs due to Theano and the remaining part is multithreaded

and runs on CPUs. We extended Hyperopt-convnet in order to

consider the operations and hyperparameters as described in

Appendix A and Section IV-A and we will make the source

code freely available in [87]. Running times are reported with

this software stack and are computed in an Intel i7 @3.5GHz

with a Tesla K40 that, on average, takes less than one day

to optimize an architecture — i.e., to probe 2,000 candidate

architectures — for a given benchmark.

As for filter optimization (FO), Cuda-convnet [80] is used.

This library has an extremely efficient implementation to

5http://scikit-learn.org

train convolutional networks via back-propagation on NVIDIA

GPUs. Moreover, it provides us with the cf10-11 convolutional

architecture taken in this work as reference for FO.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of the proposed

methods for spoofing detection. We show experiments for the

architecture optimization and filter learning approaches along

with their combination for detecting iris, face, and fingerprint

spoofing on the nine benchmarks described in Section III.

We also present results for the spoofnet, which incorporates

some domain-knowledge on the problem. We compare all

of the results with the state-of-the-art counterparts. Finally,

we discuss the pros and cons of using such approaches and

their combination along with efforts to understand the type of

features learned and some effeciency questions when testing

the proposed methods.

A. Architecture Optimization (AO)

Table III presents AO results in detail as well as previ-

ous state-of-the-art (SOTA) performance for the considered

benchmarks. With this approach, we can outperform four

SOTA methods in all three biometric modalities. Given that

AO assumes little knowledge about the problem domain, this

is remarkable. Moreover, performance is on par in other

four benchmarks, with the only exception of Swipe. Still in

Table III, we can see information about the best architecture

such as time taken to evaluate it (feature extraction + 10-fold

validation), input size, depth, and dimensionality of the output

representation in terms of columns × rows × feature maps.

Regarding the number of layers in the best architectures, we

can observe that six out of nine networks use two layers, and

three use three layers. We speculate that the number of layers

obtained is a function of the problem complexity. In fact, even

though there are many other hyperparameters involved, the

number of layers play an important role in this issue, since it

directly influences the level of non-linearity and abstraction of

the output with respect to the input.

With respect to the input size, we can see in comparison

with Table II, that the best performing architectures often

use the original image size. This was the case for all iris

benchmarks and for three (out of four) fingerprint benchmarks.

For face benchmarks, a larger input was preferred for Replay-

Attack, while a smaller input was preferred for 3DMAD. We

hypothesize that this is also related to the problem difficulty,

given that Replay-Attack seems to be more difficult, and that

larger inputs tend to lead to larger networks.

We still notice that the dimensionality of the obtained

representations are, in general, smaller than 10K features,

except for Italdata. Moreover, for the face and iris benchmarks,

it is possible to roughly observe a relationship between the

optimization objective calculated in the training set and the

detection accuracy measure on the testing set (Section IV-D),

which indicates the appropriateness of the objective for these

tasks. However, for the fingerprint benchmarks, this relation-

ship does not exist, and we accredit this to either a deficiency

of the optimization objective in modelling these problems or
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TABLE III
OVERALL RESULTS CONSIDERING RELEVANT INFORMATION OF THE BEST FOUND ARCHITECTURES, DETECTION ACCURACY (ACC) AND HTER VALUES

ACCORDING TO THE EVALUATION PROTOCOL, AND STATE-OF-THE-ART (SOTA) PERFORMANCE.

modality benchmark
architecture optimization (AO) our results SOTA results

time size layers features objective ACC HTER ACC HTER
Ref.

(secs.) (pixels) (#) (#) (%) (%) (%) (%) (%)

iris
Warsaw 52+35 640 2 10× 15× 64 (9600) 98.21 99.84 0.16 97.50 — [26]
Biosec 80+34 640 3 2× 5× 256 (2560) 97.56 98.93 1.17 100.00 — [38]
MobBIOfake 18+37 250 2 5× 7× 256 (8960) 98.94 98.63 1.38 99.75 — [6]

face
Replay-Attack 69+15 256 2 3× 3× 256 (2304) 94.65 98.75 0.75 — 5.11 [88]
3DMAD 55+15 128 2 5× 5× 64 (1600) 98.68 100.00 0.00 — 0.95 [56]

fingerprint
Biometrika 66+25 256 2 2× 2× 256 (1024) 90.11 96.50 3.50 98.30 — [11]
Crossmatch 112+12 675 3 2× 3× 256 (1536) 91.70 92.09 8.44 68.80 — [11]
Italdata 46+27 432 3 16× 13× 128 (26624) 86.89 97.45 2.55 99.40 — [11]
Swipe 97+51 962 2 53× 3× 32 (5088) 90.32 88.94 11.47 96.47 — [11]

TABLE IV
RESULTS FOR FILTER OPTIMIZATION (FO) IN cf10-11 AND spoofnet

(FIG. 3). EVEN THOUGH BOTH NETWORKS PRESENT SIMILAR BEHAVIOR,
spoofnet IS ABLE TO PUSH PERFORMANCE EVEN FURTHER IN PROBLEMS

WHICH cf10-11 WAS ALREADY GOOD FOR. ARCHITECTURE OPTIMIZATION

(AO) RESULTS (WITH RANDOM FILTERS) ARE SHOWN IN THE FIRST

COLUMN TO FACILITATE COMPARISONS.

filter
modality random optimized
(metric) benchmark AO cf10-11 spoofnet SOTA

iris Warsaw 99.84 67.20 66.42 97.50
(ACC) Biosec 98.93 59.08 47.67 100.00

MobBIOfake 98.63 99.13 100.00 99.75

face Replay-Attack 0.75 55.13 55.38 5.11
(HTER) 3DMAD 0.00 40.00 24.00 0.95

fingerprint Biometrika 96.50 98.50 99.85 98.30
(ACC) Crossmatch 92.09 97.33 98.23 68.80

Italdata 97.45 97.35 99.95 99.40
Swipe 88.94 98.70 99.08 96.47

to the existence of artifacts in the training set misguiding the

optimization.

B. Filter Optimization (FO)

Table IV shows the results for FO, where we repeat ar-

chitecture optimization (AO) results (with random filters) in

the first column to facilitate comparisons. Overall, we can see

that both networks, cf10-11 and spoofnet have similar behavior

across the biometric modalities.

Surprisingly, cf10-11 obtains excellent performance in all

four fingerprint benchmarks as well as in the MobBIOFake,

exceeding SOTA in three cases, in spite of the fact that it

was used without any modification. However, in both face

problems and in two iris problems, cf10-11 performed poorly.

Such difference in performance was not possible to anticipate

by observing training errors, which steadily decreased in all

cases until training was stopped. Therefore, we believe that in

these cases FO was misguided by the lack of training data or

structure in the training samples irrelevant to the problem.

To reinforce this claim, we performed experiments with

filter optimization (FO) in spoofnet by varying the training

set size with 20%, 40%, and 50% of fingerprint benchmarks.

As expected, in all cases, the less training examples, the

worse is the generalization of the spoofnet (lower classification

accuracies). Considering the training phase, for instance, when

using 50% of training set or less, the accuracy achieved by

the learned representation is far worse than the one achieved

when using 100% of training data. This fact reinforces the

conclusion presented herein regarding the small sample size

problem. Maybe a fine-tuning of some parameters, such as

the number of training epochs and the learning rates, can

diminish the impact of the small sample size problem stated

here, however, this is an open research topic by itself.

For spoofnet, the outcome is similar. As we expected, the

proposed architecture was able to push performance even

further in problems which cf10-11 was already good for,

outperforming SOTA in five out of nine benchmarks. This is

possibly because we made the spoofnet architecture simpler,

with less parameters, and taking input images with a size better

suited to the problem.

As compared to the results in AO, we can observe a

good balance between the approaches. In AO, the resulting

convolutional networks are remarkable in the face benchmarks.

In FO, networks are remarkable in fingerprint problems. While

in AO all optimized architectures have good performance in

iris problems, FO excelled in one of these problems, MobBIO-

Fake, with a classification accuracy of 100%. In general, AO

seems to result in convolutional networks that are more stable

across the benchmarks, while FO shines in problems in which

learning effectively occurs. Considering both AO and FO, we

can see in Table IV that we outperformed SOTA methods in

eight out of nine benchmarks. The only benchmark were SOTA

performance was not achieved is Biosec, but even in this case

the result obtained with AO is competitive.

Understanding how a set of deep learned features capture

properties and nuances of a problem is still an open question

in the vision community. However, in an attempt to understand

the behavior of the operations applied onto images after

they are forwarded through the first convolutional layer, we

generate Fig. 4a that illustrates the filters learned via backprop-

agation algorithm and Figs. 4b and 4c showing the mean of

real and fake images that compose the test set, respectively. To

obtain output values from the first convolutional layer and get a

sense of them, we also instrumented the spoofnet convolutional

network to forward the real and fake images from the test set

through network. Figs 4d and 4e show such images for the

real and fake classes, respectively.

We can see in Fig. 4a that the filters learned patterns
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resemble textural patterns instead of edge patterns as usually

occurs in several computer vision problems [13], [15]. This is

particularly interesting and in line with several anti-spoofing

methods in the the literature which also report good results

when exploring texture information [11], [52].

In addition, Fig. 4b and 4c show there are differences

between real and fake images from test, although apparently

small in such a way that a direct analysis of the images

would not be enough for decision making. However, when

we analyze the mean activation maps for each class, we can

see more interesting patterns. In Figs. 4d and 4e, we have

sixteen pictures with 128×128 pixel resolution. These images

correspond to the sixteen filters that composing the first layer

of the spoofnet. Each position (x, y) in these 128×128 images

corresponds to a 5× 5 area (receptive field units) in the input

images. Null values in a given unit means that the receptive

field of the unit was not able to respond to the input stimuli.

In contrast, non-null values mean that the receptive field of

the unit had a responsiveness to the input stimuli.

We can see that six filters have a high responsiveness

to the background information of the input images (filters

predominantly white) whilst ten filters did not respond to

background information (filters predominantly black). From

left to right, top to bottom, we can see also that the images

corresponding to the filters 2, 7, 13, 14 and 15 have high

responsiveness to information surrounding the central region

of the sensor (usually where fingerprints are present) and rich

in texture datails. Although these regions of high and low

responsiveness are similar for both classes we can notice some

differences. A significant difference in this first convolutional

layer to images for the different classes is that the response

of the filters regarding to fake images (Fig 4e) generates a

blurring pattern, unlike the responses of the filters regarding

to real images (Fig 4d) which generate a sharper pattern. We

believe that the same way as the first layer of a convolutional

network has the ability to respond to simple and relevant

patterns (edge information) to a problem of recognition objects

in general, in computer vision, the first layer in the spoofnet

also was able to react to a simple pattern recurrent in spoof

problems, the blurring effect, an artifact previously explored

in the literature [76]. Finally, we are exploring visualisation

only of the first layer; subsequent layers of the network can

find new patterns in these regions activated by the first layer

further emphasizing class differences.

C. Interplay between AO and FO

In the previous experiments, architecture optimization (AO)

was evaluated using random filters and filter optimization (FO)

was carried out in the predefined architectures cf10-11 and

spoofnet. A natural question that emerges in this context is how

these methods would perform if we (i) combine AO and FO

and if we (ii) consider random filters in cf10-11 and spoofnet.

Results from these combinations are available in Table V

and show a clear pattern. When combined with AO, FO

again exceeds previous SOTA in all fingerprint benchmarks

and performs remarkably good in MobBIOFake. However, the

same difficulty found by FO in previous experiments for both

(a) Filter weights of the first convolutional layer that were learned using
the backpropagation algorithm.

(b) Mean for real images (test
set).

(c) Mean for fake images (test
set).

(d) Activation maps for real images. (e) Activation maps for fake images.

Fig. 4. Activation maps of the filters that compose the first convolutional
layer when forwarding real and fake images through the network.

TABLE V
RESULTS FOR ARCHITECTURE AND FILTER OPTIMIZATION (AO+FO)

ALONG WITH cf10-11 AND spoofnet NETWORKS CONSIDERING RANDOM

WEIGHTS. AO+FO SHOW COMPELLING RESULTS FOR FINGERPRINTS AND

ONE IRIS BENCHMARK (MOBBIOFAKE). WE CAN ALSO SEE THAT spoofnet

CAN BENEFIT FROM RANDOM FILTERS IN SITUATIONS IT WAS NOT GOOD

FOR WHEN USING FILTER LEARNING (E.G., REPLAY-ATTACK).

filter
modality optimized random
(metric) benchmark AO cf10-11 spoofnet SOTA

iris Warsaw 59.55 87.06 96.44 97.50
(ACC) Biosec 57.50 97.33 97.42 100.00

MobBIOfake 99.38 77.00 72.00 99.75

face Replay-Attack 55.88 5.62 3.50 5.11
(HTER) 3DMAD 40.00 8.00 4.00 0.95

fingerprint Biometrika 99.30 77.45 94.70 98.30
(ACC) Crossmatch 98.04 83.11 87.82 68.80

Italdata 99.45 76.45 91.05 99.40
Swipe 99.08 87.60 96.75 96.47

face and two iris benchmarks is also observed here. Even

though spoofnet performs slightly better than AO in the cases

where SOTA is exceeded (Table IV), it is important to remark

that our AO approach may result in architectures with a much

larger number of filter weights to be optimized, and this may

have benefited spoofnet.

It is also interesting to observe in Table V the results

obtained with the use of random filters in cf10-11 and spoofnet.

The overall balance in performance of both networks across

the benchmarks is improved, similar to what we have observed



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, APRIL XXXX 11

with the use of random filters in Table III. An striking obser-

vation is that spoofnet with random filters exceed previous

SOTA in Replay-Attack, and this supports the idea that the

poor performance of spoofnet in Replay-Attack observed in the

FO experiments (Table IV) was not a matter of architecture.

D. Runtime

We estimate time requirements for anti-spoofing systems

built with convolutional networks based on measurements

obtained in architecture optimization (AO). We can see in Ta-

ble III that the most computationally intensive deep represen-

tation is the one found for the Swipe benchmark, and demands

148 (97+51) seconds to process 2,200 images. Such a running

time is only possible due to the GPU+CPU implementation

used (Section IV-E), which is critical for this type of learning

task. In a hypothetical operational scenario, we could ignore

the time required for classifier training (51 seconds, in this

case). Therefore, we can estimate that, on average, a single

image captured by a Swipe sensor would require approxi-

mately 45 milliseconds — plus a little overhead — to be fully

processed in this hypothetical system. Moreover, the existence

of much larger convolutional networks running in realtime

in budgeted mobile devices [89] also supports the idea that

the approach is readily applicable in a number of possible

scenarios.

E. Visual Assessment

In Fig. 5, we show examples of hit and missed testing

samples lying closest to the real-fake decision boundary of

the best performing system in each benchmark. A magnified

visual inspection on these images may give us some hint about

properties of the problem to which the learned representations

are sensitive.

While it is difficulty to infer anything concrete, it is in-

teresting to see that the real missed sample in Biosec is quite

bright, and that skin texture is almost absent in this case. Still,

we may argue that a noticeable difference exists in Warsaw

between the resolution used to print the images that led to the

fake hit and the fake miss.

Regarding the face benchmarks, the only noticeable obser-

vation from Replay-Attack is that the same person is missed

both when providing to the system a real and a fake biometric

reading. This may indicate that some individuals are more

likely to successfully attack a face recognition systems than

others. In 3DMAD, it is easy to see the difference between

the real and fake hits. Notice that there was no misses in this

benchmark.

A similar visual inspection is much harder in the fingerprint

benchmarks, even though the learned deep representations

could effectively characterize these problems. The only ob-

servation possible to be made here is related to the fake hit on

CrossMatch, which is clearly abnormal. The images captured

with the Swipe sensor are naturally narrow and distorted due

to the process of acquisition, and this distortion prevents any

such observation.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we investigated two deep representation re-

search approaches for detecting spoofing in different biometric

modalities. On one hand, we approached the problem by

learning representations directly from the data through archi-

tecture optimization with a final decision-making step atop

the representations. On the other, we sought to learn filter

weights for a given architecture using the well-known back-

propagation algorithm. As the two approaches might seem

naturally connected, we also examined their interplay when

taken together. In addition, we incorporated our experience

with architecture optimization as well as with training filter

weight for a given architecture into a more interesting and

adapted network, spoofnet.

Experiments showed that these approaches achieved out-

standing classification results for all problems and modali-

ties outperforming the state-of-the-art results in eight out of

nine benchmarks. Interestingly, the only case for which our

approaches did not achieve SOTA results is for the Biosec

benchmark. However, in this case, it is possible to achieve

a 98.93% against 100.0% accuracy of the literature. These

results support our hypothesis that the conception of data-

driven systems using deep representations able to extract

semantic and vision meaningful features directly from the data

is a promising venue. Another indication of this comes from

the initial study we did for understanding the type of filters

generated by the learning process. Considering the fingerprint

case, learning directly from data, it was possible to come up

with discriminative filters that explore the blurring artifacts

due to recapture. This is particularly interesting as it is in line

with previous studies using custom-tailored solutions [76].

It is important to emphasise the interplay between the

architecture and filter optimization approaches for the spoofing

problem. It is well-known in the deep learning literature that

when thousands of samples are available for learning, the

filter learning approach is a promising path. Indeed, we could

corroborate this through fingerprint benchmarks that considers

a few thousand samples for training. However, it was not the

case for faces and two iris benchmarks which suffer from

the small sample size problem (SSS) and subject variability

hindering the filter learning process. In these cases, the archi-

tecture optimization approach was able to learn representative

and discriminative features providing comparable spoofing ef-

fectiveness to the SOTA results in almost all benchmarks, and

specially outperforming them in three out of four SOTA results

when the filter learning approach failed. It is worth mentioning

that sometimes it is still possible to learn meaningful features

from the data even with a small sample size for training. We

believe this happens in more well-posed datasets with less

variability between training/testing data as it is the case of

MobioBIOfake benchmark in which the AO approach achieved

99.38% just 0.37% behind the SOTA result.

As the data tell it all, the decision to which path to follow

can also come from the data. Using the evaluation/validation

set during training, the researcher/developer can opt for op-

timizing architectures, learn filters or both. If training time

is an issue and a solution must be presented overnight, it
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Fig. 5. Examples of hit and missed testing samples lying closest to the real-fake decision boundary of each benchmark. A magnified visual inspection on
these images may suggest some properties of the problem to which the learned representations are sensitive.

might be interesting to consider an already learned network

that incorporates some additional knowledge in its design.

In this sense, spoofnet could be a good choice. In all cases,

if the developer can incorporate more training examples, the

approaches might benefit from such augmented training data.

The proposed approaches can also be adapted to other

biometric modalities not directly dealt with herein. The most

important difference would be in the input type of data since

all discussed solutions directly learn their representations from

the data.

For the case of iris spoofing detection, here we dealt only

with iris spoofing printed attacks and some experimental

datasets using cosmetic contact lenses have recently become

available allowing researchers to study this specific type of

spoofing [7], [8]. For future work, we intend to evaluate such

datasets using the proposed approaches here and also consider

other biometric modalities such as palm, vein, and gait.

Finally, it is important to take all the results discussed

herein with a grain of salt. We are not presenting the final

word in spoofing detection. In fact, there are important ad-

ditional research that could finally take this research another

step forward. We envision the application of deep learning

representations on top of pre-processed image feature maps

(e.g., LBP-like feature maps, acquisition-based maps exploring

noise signatures, visual rhythm representations, etc.). With an

n-layer feature representation, we might be able to explore

features otherwise not possible using the raw data. In addi-

tion, exploring temporal coherence and fusion would be also

important for video-based attacks.

APPENDIX A

CONVOLUTIONAL NETWORK OPERATIONS

Our networks use classic convolutional operations that can

be viewed as linear and non-linear image processing op-

erations. When stacked, these operations essentially extract

higher level representations, named multiband images, whose

pixel attributes are concatenated into high-dimensional feature

vectors for later pattern recognition.6

Assuming Î = (DI , ~I) as a multiband image, where DI ⊂
Z2 is the image domain and ~I(p) = {I1(p), I2(p), . . . , Im(p)}
is the attribute vector of a m-band pixel p = (xp, yp) ∈ DI ,

the aforementioned operations can be described as follows.

1) Filter Bank Convolution: Let A(p) be a squared region

centered at p of size LA × LA, such that A ⊂ DI and

q ∈ A(p) iff max(|xq − xp|, |yq − yp|) ≤ (LA − 1)/2.

6This appendix describes convolutional networks from an image processing
perspective, therefore the use of terms like image domain, image band, etc.
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Additionally, let Φ = (A,W ) be a filter with weights W (q)
associated with pixels q ∈ A(p). In the case of multiband

filters, filter weights can be represented as vectors ~Wi(q) =
{wi,1(q), wi,2(q), . . . , wi,m(q)} for each filter i of the bank,

and a multiband filter bank Φ = {Φ1,Φ2, . . . ,Φn} is a set of

filters Φi = (A, ~Wi), i = {1, 2, . . . , n}.

The convolution between an input image Î and a filter Φi

produces a band i of the filtered image Ĵ = (DJ , ~J), where

DJ ⊂ DI and ~J = (J1, J2, . . . , Jn), such that for each p ∈
DJ ,

Ji(p) =
∑

∀q∈A(p)

~I(q) · ~Wi(q). (1)

2) Rectified Linear Activation: Filter activation in this

work is performed by rectified linear units (RELUs) of the

type present in many state-of-the-art convolutional architec-

tures [13], [21] and is defined as

Ji(p) = max(Ji(p), 0). (2)

3) Spatial Pooling: Spatial pooling is an operation of

paramount importance in the literature of convolutional net-

works [19] that aims at bringing translational invariance to

the features by aggregating activations from the same filter in

a given region.

Let B(p) be a pooling region of size LB × LB centered at

pixel p and DK = DJ/s be a regular subsampling of every s
pixels p ∈ DJ . We call s the stride of the pooling operation.

Given that DJ ⊂ Z2, if s = 2, |DK | = |DJ |/4, for example.

The pooling operation resulting in the image K̂ = (DK , ~K)
is defined as

Ki(p) = α

√

∑

∀q∈B(p)

Ji(q)α, (3)

where p ∈ DK are pixels in the new image, i = {1, 2, . . . , n}
are the image bands, and α is a hyperparameter that controls

the sensitivity of the operation. In other words, our pooling

operation is the Lα-norm of values in B(p). The stride s and

the size of the pooling neighborhood defined by LB are other

hyperparameters of the operation.

4) Divisive Normalization: The last operation considered

in this work is divisive normalization, a mechanism widely

used in top-performing convolutional networks [13], [21]

that is based on gain control mechanisms found in cortical

neurons [90].

This operation is also defined within a squared region C(p)
of size LC × LC centered at pixel p such that

Oi(p) =
Ki(p)

√

∑n

j=1

∑

∀q∈C(p) Kj(q)2
(4)

for each pixel p ∈ DO ⊂ DK of the resulting image Ô =
(DO, ~O). Divisive normalization promotes competition among

pooled filter bands such that high responses will prevail even

more over low ones, further strengthening the robustness of

the output representation ~O.
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(PUCPR), Curitiba, Brazil, in 2001 and 2003, re-
spectively. In 2008, he received his co-tutelage
PhD degree in Computer Science from the Federal
University of Minas Gerais (UFMG), Belo Hori-
zonte, Brazil and the Université Paris-Est/Groupe
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