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Abstract—Spoofing attacks or impersonation can be easily ac-
complished in a facial biometric system wherein users without ac-
cess privileges attempt to authenticate themselves as valid users,
in which an impostor needs only a photograph or a video with
facial information of a legitimate user. Even with recent advances
in biometrics, information forensics and security, vulnerability of
facial biometric systems against spoofing attacks is still an open
problem. Even though several methods have been proposed for
photo-based spoofing attack detection, attacks performed with
videos have been vastly overlooked, which hinders the use of the
facial biometric systems in modern applications. In this paper, we
present an algorithm for video-based spoofing attack detection
through the analysis of global information which is invariant to
content, since we discard video contents and analyze content-
independent noise signatures present in the video related to the
unique acquisition processes. Our approach takes advantage of
noise signatures generated by the recaptured video to distinguish
between fake and valid access videos. For that, we use the
Fourier spectrum followed by the computation of video visual
rhythms and the extraction of different characterization methods.
For evaluation, we consider the novel Unicamp Video-Attack
Database (UVAD) which comprises 17,076 videos composed of
real access and spoofing attack videos. In addition, we evaluate
the proposed method using the Replay-Attack Database, which
contains photo-based and video-based face spoofing attacks.

Index Terms—Video-based Face Spoofing, Visual Rhythm,
Video-based Attacks, Unicamp Video-Attack Database; Imper-
sonation Detection in Facial Biometric Systems.

I. INTRODUCTION

B IOMETRIC authentication is an important mechanism

for access control that has been used in many appli-

cations. Traditional methods, including the ones based on

knowledge (e.g., keywords, secret question) or based on tokens

(e.g., smart cards), might be ineffective since they are easily

shared, lost, stolen or manipulated. In contrast, the biometric

access control has been shown as a natural and reliable

authentication method [1].

Access control can be seen as a verification problem

wherein the authentication of a user is performed by read-

ing and comparing the input biometric data captured by an

acquisition sensor (query) with the biometric data of the

same user previously stored in a database (template). The

comparison between the query and the template is performed

by a matching algorithm which produces a similarity score

used to decide whether or not the access should be granted to

the user.

Although biometric authentication is considered a secure

and reliable access control mechanism, it becomes an easy

target for attacks if protective measures are not implemented.

Fig. 1 shows a general biometric authentication system without
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any protective measure and some points of vulnerabilities.

Buhan et al. [2] provide more details about abuses in biometric

systems.

Fig. 1. General biometric system and its vulnerability points. (a) a threat
resulting from an attack on the biometric sensor, presenting a synthetic
biometric data (fake); (b), (c) and (d) represent threats resulting from re-
submission of a biometric latent signal previously stored in the communication
channel; (e) attack on the matching algorithm in order to produce a higher
or lower score; (f) an attack on the communication channel between the
enrollment center and the database (the control of this channel allows an
attacker to overwrite the template that is sent to the biometric database);
(g) an attack on the database itself, which could result in corrupted models,
denial of service to the person associated to the corrupted model, or fraudulent
authorization of an individual; (h) an attack that consists of overwriting the
output of the matching algorithm, bypassing the authentication process.

Spoofing attack is a type of attack wherein an impostor

presents a fake biometric data to the acquisition sensor with

the goal of authenticating oneself as a legitimate user (this

action can be seen as an impersonation attack), illustrated in

Fig. 1(a). Depending on the biometric trait used by the system,

this mode of attack can be easily accomplished because some

biometric data can be synthetically reproduced without much

effort. Face biometric systems are highly vulnerable to such

attacks since facial traits are widely available on the Internet,

on personal websites and social networks such as Facebook1,

MySpace2, YouTube3. In addition, we can easily collect facial

samples of a person with a digital camera.

In the context of face biometrics, a spoofing attack can be

attempted by presenting to the acquisition sensor a photograph,

a video or a 3D face model of a legitimate user enrolled in

the database. If an impostor succeeds in the attack using any

of these approaches, the uniqueness premise of the biometric

system or its raison d’être is violated, making the system

vulnerable [1].

Several methods have been proposed in the literature to

detect spoofing attacks based on photographs, whereas attacks

performed with videos and 3D models have been overlooked.

1http://www.facebook.com
2http://www.myspace.com
3http://www.youtube.com
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Many methods aim at distinguishing real from fake biometric

data based on the fact that artifacts are inserted into the printed

samples due to printing process, therefore allowing one to

explore attributes related to such artifacts including color,

shape and texture [3]–[5]. Since photographs are static, another

approach is to detect small movements in the face [6]–[8].

Recent works [9], [10] investigate context information of the

scene (e.g., background information) to detect face liveness.

We believe that the aforementioned approaches are not

suitable for detecting video-based attacks directly, especially

in high resolution videos. The difficulty in detecting spoofing

performed by video lies in the fact that it is easier to deceive

an authentication system through a video since the dynamics

of the video makes the biometric data more realistic. Further-

more, the content of a video is less affected by degradations

in terms of color, shape or texture, unlike the printed images.

Finally, we have less artifacts generated during quantization

and discretization of the image captured by the imaging sensor

in high resolution videos.

In this paper, we present a method for detecting video-

based face spoofing attacks under the hypothesis that fake

and real biometric data contain different acquisition-related

noise signatures. To the best of our knowledge, this is the

first attempt of dealing with video-based face spoofing using

analysis of global information that is invariant to the video

content. Our solution explores the artifacts added to the

biometric samples during the viewing process of the videos

in the display devices and noise signatures added during

the recapture process performed by the acquisition sensor of

the biometric system. Through the spectral analysis of the

noise signature and the use of visual rhythms, we designed

a feature characterization process able to incorporate temporal

information of the behavior of the noise signal from the

biometric samples.

In a previous work [11], we introduced an anti-spoofing

solution that was evaluated in an extended version of the

Print-Attack database [10] given that, in the literature, there

was no specific database to video-based face spoofing attacks.

Originally, the Print-Attack database was developed to be

used in the evaluation of photograph-based spoofing attack

detection. As our aim in that work was also at video-based

spoofing detection, we simulated attempts of spoofing attacks

using 100 videos of valid access in six monitors, generating

600 attempted attack videos. We reported near-perfect classifi-

cation results (AUC ≈ 100%). That is due to the low resolution

of original videos, which favored the high performance of our

method, since noise signal was the main information used in it.

Furthermore, in a more realistic attack, an impostor probably

would create fake biometric samples with the highest quality

possible in order to minimize the differences between real and

fake biometric samples.

To contemplate a more realistic scenario, this work extends

upon our previous work [11] and also introduces the Unicamp

Video-Based Attack Database (UVAD)4, specifically devel-

oped to evaluate video-based attacks in order to verify the

4This database will be make public and freely available. Users present in the
database formally authorized the release of their data for scientific purposes.

following aspects:

• The behavior of the method for attempted attacks with

high resolution videos;

• The influence of the display devices in our method;

• The influence of the biometric sensor in the proposed

method;

• The best feature characterization to capture the video

artifacts;

• Comparison with one of the best anti-spoofing methods

for photo-based spoofing attack of notice.

Such verifications can be accomplished due to the diversity

of the devices used to create the database which comprises

valid access and attempted attack videos of 404 different

people. Each user was filmed in two sections in different

scenarios and lighting conditions. The attempted attack videos

were produced using seven different display devices and six

digital cameras from different manufacturers. The database has

808 valid access videos and 16, 268 videos of video-based

attempted spoofing attacks, all in full high definition quality.

In summary, the main contributions of this work are:

(i) An efficient and effective method for video-based face

spoofing attack detection able to recognize attempted

attacks carried out with high-resolution videos;

(ii) The evaluation of the video characterization process

considering different image features such as the Gray-

Level Co-occurrence Matrices (GLCM), Histograms of

Oriented Gradients (HOG) and Local Binary Patterns

Histogram (LBP) feature descriptors;

(iii) The creation of a large and publicly available bench-

mark to evaluate anti-spoofing methods performed with

videos considering several display devices and different

acquisition sensors;

(iv) A detailed study of the video-based spoofing attack

problem that yielded important conclusions that certainly

will be useful for the proposition of new anti-spoofing

methods for video-based attacks not only in the biomet-

ric domain but also in other applications analyzing video

recapture footprints.

We organize the remainder of this paper into five sections.

Section II discusses state-of-the-art methods for detecting

spoofing attacks to face biometrics. Section III presents the

proposed method. Section IV gives details regarding the

proposed video-attack database while Section V shows and

discusses the experimental results. Finally, Section VI presents

the conclusions obtained with this work.

II. RELATED WORK

According to Pan et al. [12], there are four major categories

of anti-spoofing methods: data-driven characterization, user

behavior modeling, user interaction need, and the presence

of additional devices. Solutions that require extra devices

are limited due to their high cost, which can prevent large-

scale use (e.g., deployment of an anti-spoofing solution on all

ATMs of a banking network). The user cooperation during the

biometric authentication can also be used to facilitate spoofing

attack detection, however, this procedure lessens the trans-

parency and inserts an additional time in the authentication
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process. Finally, the user behavior modeling approach (e.g.,

eye blinking, small face movements) has been considered in

the literature for photo-based face spoofing detection, never-

theless, this approach might not work well for video-based

spoofing attack detection due to the high dynamics present in

video scenes. Solutions based on data-driven characterization

explore biometric data by thoroughly searching for evidence

and artifacts useful to detect attempted attacks.

In this section, we review the literature on user behavior

modeling and data-driven characterization methods, since such

methods are preferable in practice because they are non-

intrusive and do not require extra devices or human interac-

tion. Therefore, they are easily integrable with existing face

recognition systems. In this category, there are several methods

for photo-based spoofing attack detection that explore clues

such as motion and frequency analysis, scene information, and

texture. Before going any further, however, we first present

some available face-related spoofing databases in the literature

since most of the methods use one or some of such reference

benchmarks.

A. Existing Databases

1) NUAA Database: The NUAA Photograph impostor

database [3] comprises 5, 105 valid access images and 7, 509
fake images collected with a generic webcam. The images

of valid access were collected of 15 identities in three

sections in different places and illumination conditions, all

with 640 × 480 pixel resolution. The production of the fake

samples were done by taking high resolution photographs

of 15 identities with a Canon digital camera. The authors

simulated two attack modes: (1) printing photographs on

photo paper; and (2) printing the photographs on A4 paper

using an HP color printer.

2) Print-Attack Database: The Print-Attack database [10]

contains short videos of valid access and photo-based spoofing

attacks of 50 identities. The valid access videos were generated

in controlled and uncontrolled illumination conditions. All

videos are in 320×240 pixel resolution, 25 frames per second

(fps) and 15 seconds of duration. The attempted attack videos

were generated by taking two high resolution photographs with

a Canon PowerShot digital camera of the 50 identities printed

on common A4 papers. The attempted attack videos were

produced showing the photographs to a webcam considering

two attack modes: (1) hand-based attacks wherein the impostor

user presents the photographs using her own hands; and

(2) fixed-support attacks in which the photographs were glued

on a wall so that they do not move during the attempted

attacks. In total, 200 access valid videos and 200 attempted

attack videos were generated.

3) CASIA Database: The CASIA database [13] comprises

600 video clips of 50 identities. The videos were filmed in

a natural scene with three cameras: a new and an old USB

camera both with 640 × 480 pixel resolution and a Sony

NEX-5 digital camera with 1, 920×1, 080 pixels of resolution.

The database contains three attack modes: (1) warped photo

attack; (150 640×480-attempted attack videos); (2) cut photo

attack (150 640× 480-attempted attack videos); and (3) video

playback using an iPad (150 1, 280 × 720-attempted attack

videos). Some limitations of this database include: the authors

failed to prevent the downsizing of the videos shown during

the simulation of the video-based spoofing attacks. Such

downsizing adds artifacts to the attempted attack videos that

are not present in the valid access videos, creating an artificial

data separability. Furthermore, the small amount of data and

the use of only one device in the creation of the video-based

spoofing attacks prevent more refined investigations.

4) Replay-Attack Database: The Replay-Attack

database [14] contains short video recordings of valid

access and attempted attacks of 50 identities. Similar to

the Print-Attack [10], the videos were generated with a low

resolution webcam with 320 × 240 pixel resolution, 25 fps

and 15 seconds of duration and the video capture process is

the same as described in [10]. However, different from [10],

two other attempted attack modes are considered: (1) mobile

attacks where the impostor user displays photographs and

videos in an iPhone screen produced with the same iPhone;

and (2) high-definition attacks where the impostor user

shows high resolution photographs and videos produced with

a Canon PowerShot digital camera using the screen of a

1024× 768-pixel resolution iPad.

B. Motion Analysis and Clues of the Scene

Motion analysis of the face region was an early approach

used to detect the liveness of biometric samples. In [6], Pan

et al. investigated the action of eye blinking to detect attacks

performed with photographs. The authors proposed the use of

the undirected conditional random field framework to model

the action of opening and closing eyes. Tests were performed

in a database with 80 videos and 20 identities using a webcam.

The authors reported a false alarm rate smaller than 1%.

Similarly, Li et al. [7] proposed a method for detecting a

person’s eye blink based on the fact that edges vary homo-

responsively to the behavior of eye blink over some scales and

orientations. Analyzing the trends of Gabor response waves in

multi-scale and multi-orientation, the authors choose the five

most homo-responsive Gabor response waves to the behavior

of eye blink.

In [8], Xu et al. proposed a method for detecting the eye

states formulated as a binary classification problem in which

the closed state represents the positive class and the open state

the negative class. The authors scan the region of the eyes with

N blocks of different sizes for each biometric sample. For

each block, three different feature vectors were extracted by

using variants of the Local Binary Pattern Histogram method,

generating three sets with N feature vectors. The authors

collected 11, 165 images from which 5, 786 were used in the

training stage. The best reported detection rate was 98.3%.

Tronci et al. [15] explored the motion information and clues

that are extracted from the scene considering static and video-

based analyses. A static analysis consists of capturing spatial

information of the still images using different visual features

as color and edge directivity descriptor, fuzzy color and texture

histogram among others. The analysis is motivated by the

loss of quality and by the addition of noise in the biometric
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samples during the manufacturing process of the photographs.

Video-based analysis is performed as a combination of simple

measures of motion such as eye blink, mouth movement, facial

expression change among others. In the end, a classifier is

trained for each feature with the aid of a fusion scheme for

determining spoofing attacks.

Pan et al. [9] extended upon [6] by including context

information of the scene. The authors analyzed clues such as

eye blink in the face region. They extracted a set of key points

and calculated a Local Binary Pattern Histogram (LBP) around

such points and used . the χ2 distance function to compare

histograms to reference patterns previously calculated.

Anjos et al. [10] proposed a database and a method for

photo-based spoofing attack detection assuming a stationary

facial recognition system. In this case, the intensity of the rela-

tive motion between the region of the face and the background

can be used as a clue to distinguish valid access of attempted

attacks. The authors calculate a measure of motion for each

video frame obtaining a one-dimensional signal, which is

described by the extraction of five measures to form a feature

vector. The authors validated the method through the Print-

Attack database (c.f., Sec. II-A2).

Yan et al. [16] proposed a method for liveness detection

based on three scene clues in both spatial and temporal spaces.

According to the authors, the non-rigid facial motion and the

face-background consistency incorporate temporal information

that can help the decision-making process regarding the face

liveness. The authors seek a pattern of non-rigid motion in

the face region using the batch image alignment method. The

face-background consistency is based on the fact that if the

face is real, its motion must be totally independent of the

background and is performed by separating the region of the

face from background and analyzing the motion. Finally, the

authors perform a banding artifact analysis, which are treated

as additive noise. For that, the authors calculated the first order

wavelet decomposition of the image. The authors validated the

method through the Print-Attack database (c.f., Sec. II-A2) as

well as others created by them. Good results were reported.

C. Texture and Frequency Analysis

Li et al. [17] proposed an anti-spoofing method for photo-

based attempted attacks under the assumption that the faces

present in photographs are smaller than the real faces and

that the expressions and poses of the faces in the photographs

are invariant. The detection of an attack through photographs

is performed by analyzing the 2-D Fourier spectrum of the

samples and calculating the energy rate of the high frequency

components, which is used as a threshold to decide whether

the biometric sample came from a fake face or not.

In [3], Tan et al. dealt with printed photographs attacks by

assuming that the surface roughness of real and photo-attack

classes are different. The authors proposed the use of the Varia-

tional Retinex-based and Logarithmic Total Variation methods

for estimating the luminance and reflectance of an input image,

respectively. The authors modeled the detection problem as

a binary classification problem and evaluated the use of the

Sparse Logistic Regression and Sparse Low Rank Bilinear

Logistic Regression methods for classifying the luminance,

reflectance, and Fourier spectrum images previously estimated.

The authors validated the method through the NUAA Photo-

graph impostor database (c.f., Sec. II-A1). Peixoto et al. [18]

extended upon [3] by incorporating methods for dealing with

different illumination conditions. The reported results showed

that the proposed extension reduced the misclassification in

more than 50% to attempted attacks with high resolution

photographs of the NUAA database.

Määttä et al. [4] proposed a method for photo-based spoof-

ing based on the fact that real and fake biometric facial

samples differ: (1) in how these objects reflect light (hu-

man faces are 3D objects while printed faces are planar

objects); (2) in the pigmentation; and (3) in the quality due

to printing defects contained in the photographs. The authors

used the LBP method for capturing micro-texture information.

Thet evaluated the algorithm through the NUAA database

(c.f. Sec. II-A1), obtaining an AUC of 99%. In [19], the same

authors extended their algorithm for considering Histogram of

Oriented Gradient (HOG) and the Gabor wavelet descriptors.

Schwartz et al. [5] proposed an anti-spoofing solution for

photo-based attacks exploring different properties of the face

region (texture, color and shape) to obtain a holistic face rep-

resentation. Considering only the face region, for each frame

of the video containing the facial information, we generate a

feature vector formed by combining different low-level feature

descriptors as Histogram of Oriented Gradients (HOG), Color

Frequency (CF), Gray Level Co-occurrence Matrix (GLCM),

and Histograms of Shearlet Coefficients (HSC). Then, the

feature vectors are combined into one feature vector containing

a rich spatial-temporal information of the biometric sample

and fed to a Partial Least Square classification technique.

In [20], Kim et al. explored two key observations: (1) the

difference in the existence of 3D shapes leads to the difference

in low frequency regions which is closely related to the

luminance component; and (2) the difference between real

and fake faces generates a disparity in the high frequency

information. The motivation for using texture information lies

in the fact that printed faces tend to loose the richness of

texture details. Their method extracts a feature vector from

each biometric sample by transforming the images to the

frequency domain and calculating their respective Fourier

spectrum on logarithmic scale, from which average values of

the energy of 32 concentric rings are extracted.

Recently, Zhang et al. [13] proposed a simple algorithm

for detecting photo-based attempted spoofing attacks based

on the fact that fake faces present lower quality compared

with real faces. For a given image captured by the acquisition

sensor, four Difference of Gaussian filters (DoG) with different

values of σ were used to extract high frequency information,

generating four new images that were concatenated and used

as input of a binary classifier trained using the Support Vector

Machine (SVM) technique.

In [14], Anjos et al. conducted a study to investigate the

potential of texture descriptors based on Local Binary Pattern

(LBP), such as LBPu2
3×3, transitional (tLBP), direction-coded

(dLBP) and modified LBP (mLBP). From the histograms

generated from the descriptors mentioned above, the authors
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evaluated a simple manner to classify them based on histogram

comparisons through χ2 distance. A set of classifiers was

considered, such as Linear Discriminant Analysis (LDA) and

Support Vector Machine (SVM) with a radial basis function

as kernel. Evaluations were performed on the NUAA, Print-

Attack, and Replay-Attack databases (c.f., Sec. II-A).

D. Other Approaches

Optical flow analysis has also been considered in the litera-

ture for photo-based spoofing attack detection. Bao et al. [21]

proposed an anti-spoofing solution based on the analysis of the

characteristics of the optical flow field generated for a planar

and 3D object.

Unlike the faces contained in photographs, which are reg-

ular planar objects, real faces are irregular and 3D objects,

which lead to a differentiation between the optical flow fields

generated for real and fake faces. In [22], Kollreider et al.

analyzed the trajectory of three parts of the face: the region

between eyes and nose, left ear, and right ear. Using optical

flow patterns and a model based on Gabor decomposition, the

authors note that, in real faces, these parts of the face move

differently from fake faces.

Marsico et al. [23] proposed an anti-spoofing solution based

on the theory of 3D projective invariants. By the fundamental

theorem of the invariant geometry, it is possible to show that

the cross ratio of five points on the same plane are invariant

to rotations if and only if the these points satisfy specific

collinearity or co-planarity constrains. Thus, six cross-ratio

measures are computed to different configurations of points

located in non-coplanar regions of the face (e.g. center of eyes,

nose tip and chin). If a pose of the face located in front of

the acquisition sensor changes, but the computed cross ratio

remains constant, the points must be coplanar (i.e., they belong

to a planar fake face).

Finally, recent works have been developed in order to

evaluate spoofing attacks in multi-modal biometric systems

including [24]–[28]. In these works, the authors investigate

robust fusion schemes for spoofing attacks considering face

and fingerprint biometric traits.

E. Problems with the Existing Approaches

Approaches based on clues of the scene have strong con-

straints that make sense only to photo-based spoofing attacks.

In the case of attacks performed by video, such constraints

certainly will fail due to the dynamic nature of the scene

in this type of media (e.g., motion). The static background

assumption made in some works described earlier is lim-

ited since the face moves independently of the background

in a video-based attempted spoofing attack. Moreover, the

assumption of a background previously known restricts the

use of the method since in many applications (e.g., web

and mobile applications) the data acquisition is performed

remotely in an environment and, therefore, we can not assume

a previously known background. Finally, we can easily change

the background of an image through image manipulation.

In approaches based on optical flow and motion analysis,

motion is easily simulated by rotating or bending the pho-

tographs. Moreover, such methods should be evaluated by

considering video-based attempted spoofing attacks since these

media carries motion information and, therefore, has potential

to deceive such methods. Another disadvantage of approaches

based on motion analysis is that the additional time required to

capture some face motions prevents a fast spoofing detection.

For example, a type of motion analyses extensively explored

in the literature is the action of eye blink that occurs once

every four or six seconds. However, this rate can be reduced

to an average of three to eight every six seconds due to

psychological factors [7]. In this case, at least 20 seconds are

required to detect eye blinking.

Finally, methods based on texture analysis should consider

attempted attacks performed with high resolution videos.

Photo-based spoofing attacks have a characteristic that facil-

itates the detection of this type of attack, which is absent in

video-based spoofing attacks: the decrease of quality of the

biometric sample due to the printing process, since printers

have limitations both in terms of resolution and number of

colors that can be produced, which directly influence the

texture of the biometric sample, being easily captured by

texture information.

Finally, the method proposed in this work aims at over-

coming such difficulties by capturing acquisition-related noise

information features generated by the video recapture. As the

noise signal is independent of the image signal, our method

explores this fact by isolating the noise, so it tends to be

less dependent of the video content. Furthermore, our method

requires only 50 frames (≈ 2 seconds) for detecting an

attempted attack.

III. PROPOSED METHOD

Here, we present an algorithm for video-based attempted

spoofing attack detection. Our solution relies on the fact that

the addition of a noise pattern in the samples is inevitable

during the acquisition step of the facial biometric samples.

The acquisition process is performed by a camera that has an

imaging sensor with thousands of photosensitive transducers

that convert light energy into electrical charges, which are

converted into a digital signal by an A/D converter. In [29],

Lukäs et al. define two types of noise that can be present in an

image: the fixed pattern noise (FPN) and the noise resulting

from the photo-responsiveness of non-uniform light-sensitive

cells (PRNU). The noise pattern has been widely explored in

digital document forensics as in the problem of identifying the

specific camera that acquired a document [29], [30].

During a video-based spoofing attack, we have the inser-

tion of artifacts in the biometric samples captured by the

acquisition sensor, such as distortions, flickering, mooring, and

banding effect [31]. Such artifacts, loosely referenced in this

paper as noise, are added during the generation and viewing

process of the attack video frames in display device screens.

Thus, the biometric sample extracted from an attack video will

probably contain more noise than the real biometric samples.

With this in mind, we design a feature characterization process

based on noise signatures along with video summarization

methods that are used by a classification algorithm to find a

separation decision boundary between real and fake biometric
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Fig. 2. Proposed method. Given a training set consisting of videos of valid accesses, video-based spoofs and a test video, we first extract a noise signature
of every video (training and testing) and calculate the Fourier Spectrum on logarithmic scale for each video frame and then summarize each video by means
of its visual rhythm. Considering the training samples, we train a classifier using a summarized version of the visual rhythms obtained by the estimation of
the gray level co-occurrence matrices, as features. With a trained classifier, we are able to test a visual rhythm for a given video under investigation and point
out whether it is a valid access or a spoof.

data. Fig. 2 summarizes the steps of the proposed method,

which are explained in detail in the following sections.

A. Calculation of the Residual Noise Videos

The first step of the algorithm is to isolate the noise

information contained in the videos that were captured by the

acquisition sensor, hereinafter referred to as input video ν. A

video ν in the domain 2D+ t can be defined as a sequence of

t frames, where each frame is a function f(x, y) ∈ N
2 of the

brightness of each pixel in the position (x, y) of the scene.

The extraction of the noise signal of the input video ν is

performed as follows. The frames in video ν are converted into

gray-scale and an instance of νGray is submitted to a filtering

process using a low-pass filter in order to eliminate noise,

generating a filtered video νFiltered. Then, a frame-by-frame

subtraction between the νGray and νFiltered is performed,

generating a new video that contains, mostly, the noise signal

in which we are interested, hereinafter named as Residual

Noise Video (νNR), as formalized in Equation 1.






ν
(t)
Filtered = f(ν

(t)
Gray)

ν
(t)
NR = ν

(t)
Gray − ν

(t)
Filtered ∀ t ∈ T = {1, 2, . . . , t},

(1)

where ν(t) ∈ N
2 is the t-th frame of ν and f a filtering

operation.

B. Calculation of the Fourier Spectrum Videos

The analysis of the noise pattern and possible artifacts

contained in the biometric samples is performed by applying

a 2D discrete Fourier transform to each frame of the Noise

Residual Video (νNR) using Equation 2. Next, the Fourier

spectrum is computed on logarithmic scale and with origin

at the center of the frame (Equation 3). As a result of this

process, we end up with a video of the spectra, further on

in this document referred to as Fourier Spectrum Videos νFS .

Fig. 3(a) and 3(b) depict the logarithm of the Fourier spectrum

of a video frame obtained from a valid access video and from

an attempted attack video, respectively.

F(v, u) =

M−1
∑

x=0

N−1
∑

y=0

νNR(x, y)e
−j2π[(vx/M)+(uy/N)] (2)

(a) Valid video. (b) Attack video.

Fig. 3. Example of a video frame of the spectra generated from (a) a valid
video and (b) an attack video.

|F(v, u)| =

√

R(v, u)
2
+ I(v, u)

2

νFS(v, u) = log(1 + |F(v, u)|) (3)

C. Calculation of the Visual Rhythms

In order to capture the temporal information contained

in the Fourier Spectrum Videos (νFS) and summarize their

content, we employ the visual rhythm technique [32]. Visual

rhythm is a simplification of a video content in a 2D image

obtained by sampling regions of the video. Applications of

this concept can be found in the work by Chun et al. [33] that

use visual rhythms for fast text caption localization on video,

and Guimarães et al. [34] who propose a method for gradual

transition detection in videos. The use of visual rhythm in our

work is crucial since it allows us to capture patterns that are

present in the Fourier Spectrum Videos providing an effective

way of viewing a video as a still image.

Considering a video ν in the 2D+ t domain with t frames

of dimensions W × H pixels, the visual rhythm IνR
is a

representation of the video ν, in which regions of interest of

each frame are sampled and aggregated to form a new image,

called visual rhythm. The regions of interest must be carefully

chosen to capture the patterns contained in νFS . Formally, a

visual rhythm IνR
of a video ν can be defined by

IνR
(z, t) = ν(x(z), y(z), t), (4)

where x(z) and y(z) are functions of the independent variable

z. The visual rhythm is a two-dimensional image whose

vertical z axis consists of a certain group of pixels extracted

from video ν and the samples are accumulated along the time

t. Therefore, according to the mapping of x(z) and y(z),
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we can generate several types of visual rhythms [32]. For

instance, the sampling of the central vertical pixels can be

performed by applying IνR
(z, t) = ν(x(W2 ), y(z), t). Simi-

larly, the central horizontal pixels can be extracted by applying

IνR
(z, t) = ν(x(z), y(H2 ), t).

Given that the lower responses are mainly concentrated at

the abscissa and ordinate axes [35] of the Fourier spectrum

(see Fig. 3), initially we consider two regions of interest in

the frames that form the spectrum video in the construction of

two types of visual rhythms: (i) the horizontal visual rhythm

formed by central horizontal lines and (ii) the vertical visual

rhythm formed by central vertical lines. In both cases, we can

summarize relevant content of the spectrum video in a single

image. Fig. 4 depicts the visual rhythms generated by two

regions of interest considering a valid (Fig. 4(a) and 4(c)) and

an attack video (Fig. 4(b) and 4(d)).

(a) Valid video. (b) Attack video.

(c) Valid video. (d) Attack video.

Fig. 4. Visual rhythms constructed from (a)-(b) central horizontal lines and
from (c)-(d) central vertical lines. Note that the visual rhythm obtained from
horizontal lines has been rotated 90 degrees for visualization purposes.

Even though the visual rhythms are different for valid

and attack videos, their construction disregards the highest

responses that are not at the abscissa and ordinate axes and,

in some cases, such information is important to make a better

distinction between valid access and attempted attack videos,

as shown in Fig. 5. With this in mind, we extract a third type

of visual rhythm by traversing along the frames of Fourier

Spectrum Videos (νFS) in a zig-zag scheme. Fig. 6 shows the

zig-zag visual rhythm generated for a valid access video and

an attempted attack video.

(a) Valid video. (b) Attack video.

Fig. 5. Examples of spectra whose highest responses are not only at the
abscissa and ordinates axes.

(a) Valid video. (b) Attack video.

Fig. 6. Examples of visual rhythms constructed in a zig-zag traversal.

D. Feature Extraction

Once the visual rhythms are computed, we can use machine

learning techniques to train a classifier to decide whether a

biometric sample is fake or not. However, if the intensity of the

pixels composing the visual rhythms are directly considered,

the dimensionality of the feature space will be extremely high

and most of the traditional classification methods will not work

properly. Therefore, we need to extract a compact set of feature

descriptors that best discriminate the visual rhythms generated

from the fake and valid videos.

In this work, we evaluate the use of three feature de-

scriptors: Gray Level Co-occurrence Matrices (GLCM) [36],

Local Binary Patterns (LBP) [37] and Histogram of Oriented

Gradients (HOG) [38]. The choice for using GLCM and LBP

descriptors is motivated by the fact that the visual rhythms can

be interpreted as texture maps (see Fig. 4). Moreover, if we

consider the intensity values of the pixels of the visual rhythms

as height and edge artifacts represented along the maps, we see

(Fig. 6) that such images have different edge forms, a property

that can be reasonably explored by the HOG descriptor.

a) GLCM: It is a structure that describes the frequency

of gray level occurrence between pairs of pixels. When nor-

malized, the co-occurrence matrix becomes an estimation of

joint probabilities between pairs of pixels at a distance d in a

given orientation θ. After calculating the co-occurrence matrix

for four different orientations, we extracted 12 measures to

summarize the textural information of each matrix: angular

second-moment, contrast, correlation, variance, inverse dif-

ference moment, sum average, sum variance, sum entropy,

entropy, difference variance, difference entropy, and direction-

ality.

b) LBP: The LBP operator [37] provides a robust way

to describe local binary patterns. Basically, a window of size 3
pixels is thresholded by the value of the central pixel. The pixel

values are then multiplied by binomial weights and summed to

obtain an LBP number to this window. Thus, LBP can produce

up 28 = 256 different texture patterns, and a histogram with

256 bins is calculated and used as a texture descriptor.

c) HOG: The basic idea of this descriptor relies on the

fact that the local appearance of the objects and shape can

be well characterized by the distribution of local intensity

gradients or edge directions, even without precise knowledge

of the corresponding gradient or edge positions. Basically,

the image is divided into small spatial regions, referred to as

cells, and for each cell is calculated a histogram of gradient

directions. A set of cells is grouped into a block and the

concatenation of the descriptors extracted from each cell
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followed by a normalization results in the HOG descriptor.

E. Learning

We evaluate the proposed characterization process using two

machine learning techniques: Support Vector Machine (SVM)

and Partial Least Square (PLS) that are used in the construction

of a binary classifier to decide whether a sample is fake or not.

The SVM algorithm [39] uses either a linear or a non-linear

mapping, depending on the type of space used to transform

the original data onto a higher dimensional one.

PLS regression method [40] is based on the linear trans-

formation of a large number of descriptors to a new space

based on a small number of orthogonal projection vectors. In

other words, the projection vectors are mutually independent

linear combinations of the original descriptors. These vectors

are chosen to provide maximum correlation with the dependent

variables, which are the labels of the training classes.

IV. DATABASE CREATION

This section presents the Unicamp Video-Attack Database

(UVAD) specifically built for evaluation of the video-based

spoofing attack detection methods. The UVAD contains valid

access and attempted attack videos of 404 different identities.

All videos were created at Full HD quality, with 30 frames

per second and are nine seconds long.

The generation of valid access videos was performed by

filming each participant in two sections considering different

backgrounds, lighting conditions, and places (indoors and

outdoors). As each person is recorded by only one camera,

then there is no identity overlap between video from different

camera. In total, 808 videos that represent valid accesses were

generated with six different cameras: a 9.1 megapixels Sony

CyberShot DSC-HX1, a 10.0 megapixels Canon PowerShot

SX1 IS, a 10.3 megapixels Nikon Coolpix P100, a 14.0
megapixels Kodak Z981, a 14.0 megapixels Olympus SP

800UZ, and a 12.1 megapixels Panasonic FZ35 digital camera.

We used a tripod to avoid disturbance in the videos during the

recordings. The generated videos were cropped to maintain a

resolution of 1, 366×768 and allow the faces to be positioned

at the center of the video frame. No resampling was performed

whatsoever.

The attempted attack videos were generated by using the

same digital cameras utilized to generate the valid access

videos and seven different display devices with a 1, 366×768
pixel resolution. The valid access videos were displayed on

seven display devices and recaptured with the same digital

cameras used previously. Each display device was positioned

in front of each camera at a distance of 90 ± 5cm supported

in a tripod, so that to ensure each video with 1, 366 × 768
resolution after cropping.

As the valid access videos were cropped to maintain a

1, 366 × 768 resolution, we guarantee that there was no

scaling transformations during their exhibition. In total, we

have generated 16, 268 attempted attack videos and 808 valid

access videos. Fig. 7 and 8 depict real and fake video frame

examples, respectively.

Table I shows a comparison between the proposed UVAD

database and some other reference benchmarks in the litera-

ture. The diversity of display devices and acquisition sensors

used in the generation of UVAD is an important characteristic

that is not found in the other databases, which was essential

to a better comprehension of the problem and for a precise

evaluation of the methods as we will show in Section V.

V. EXPERIMENTAL RESULTS

In this section, we show the details of the experiments

and performance evaluations of the developed method. We

first consider the UVAD database which was introduced in

Section IV (Experiments I-IV). The diversity of devices used

allows us to answer important questions regarding some

strengths and limitations of the proposed method. In addition,

we also evaluate the proposed method with respect to the liter-

ature (Experiment V) and through the Replay-Attack Database

(c.f., Sec. II-A4) (Experiment VI).

A. Protocols for the UVAD Database

In this section, we define appropriate protocols for each

experiment.

Protocol I. The aim of this protocol is at finding the best

configuration of the proposed method. In this protocol, we

divide the dataset into two sets, hereintofore referred to as

training and test sets. During partition, we guarantee that

there is no overlap of data from the same capture and display

devices between training and test sets, so that we have a proper

comparison without experimental bias.

The valid access videos from six cameras were divided into

two subsets, A and B. The valid access videos in set A were

again divided to form two sets of valid access videos: (i) real

training set, composed of videos generated by three cameras

chosen arbitrarily (Sony, Canon, and Kodak) and (ii) real test

set, composed of videos generated by the remaining three

cameras (Nikon, Olympus, and Panasonic).

In sequence, the valid access videos in set B were used to

generate two sets of attempted attack videos: (i) the fake train-

ing set, in which videos in B generated by the Sony, Canon,

and Kodak cameras were displayed on three display devices

and recaptured by the same three cameras, and (ii) the fake

test set, whose videos in B generated by the Nikon, Olympus,

and Panasonic cameras were displayed on the remaining three

display devices and recaptured by the same cameras.

Protocol II. The aim of this protocol is at checking the

influence of the biometric sensor on the proposed method.

Similarly to the previous protocol, we divide the dataset into

two sets, training and test sets. However, we create nine

training and test sets, changing the cameras that compose such

sets. Again, we guarantee that there is no overlap of data from

the same cameras and display devices. Our goal with these

partitions is to train a classifier with videos from three cameras

and test it with the videos from other three cameras that never

were used or seen by the classifier.

Protocol III. The aim of this protocol is at checking the

influence of the display devices over the detection method. In
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Fig. 7. Examples of valid access video frames for outdoor (first and second images on the left) and indoor (three images on the right) scenes.

Fig. 8. Examples of attempted attack video frames for outdoor (first and second images on the left) and indoor (three images on the right) scenes using
Sony (first and second columns), Canon (third and fourth columns) and Nikon (last column) cameras.

TABLE I
COMPARISON OF THE PROPOSED UVAD DATABASE AND OTHER AVAILABLE REFERENCE BENCHMARKS IN THE LITERATURE.

Database
Number of Number of Number of Number of Number of devices used

subjects valid accesses attacks by photo attacks by video to create the attack videos

NUAA [3] 15 5, 105 7, 509 — —

Print-Attack [10] 50 200 200 — —

CASIA [13] 50 150 300 150 3 cameras and 1 display device

Replay-Attack [14] 50 200 200 800 2 cameras and 2 display devices

UVAD (proposed) 404 808 — 16, 268 6 cameras and 7 display devices

this protocol, we divide the videos from each camera into two

sets, A and B. Set A contains attempted attacks performed with

three display devices and set B comprises attempted attacks

performed with the three complementary display devices. The

partition considering different display devices for both attack

sets was carried out to avoid that a classifier takes biased

conclusions regarding videos coming from devices already

seen during the training step. The classification results are

given in terms of mean of the results obtained in two rounds

of experiments by using the set A to train a classifier and B

to test it, and vice versa.

B. Parameters for the Filtering Process, Visual Rhythm Anal-

ysis and Classification

To extract signal noise signature of the videos, as Equation 1

shows, we consider the use of spatial linear and non-linear

filters: a Gaussian filter with µ = 0, σ = 2, and size 7×7 and

a Median filter with size 7×7, respectively. These parameters

were obtained empirically in [11] on a different dataset.

After calculating the noise signature using Equations 2

and 3, we extract the visual rhythms (horizontal and vertical)

of each video considering the first 50 frames and a block of

either 30 columns (vertical) pixels or 30 lines (horizontal).

Since the visual vertical and horizontal rhythms of each video

carry different temporal information, we evaluate the two

types of visual rhythms along with their combinations. The

horizontal visual rhythms (H) are in a dimensional space of

1, 366 × 1, 500-d while the vertical visual rhythms (V) are

in 768 × 1, 500-d. To generate the zig-zag visual rhythms

(Z), we also consider the first 50 frames of the Fourier

Spectrum transformed videos. We extract block lines of 30
pixels through the traversal of the frames, from left to right,

top to bottom. Thus, we obtained visual rhythms that are in a

dimensional space of 17, 482× 1, 500-d.

The high dimensionality and large amount of visual rhythms

prevent us from using pixel intensities directly as features.

Therefore, we consider the visual rhythms as texture maps

and calculate their texture patterns using different charac-

terization methods. For instance, for the standard configu-

ration, we considered the GLCM descriptor with directions

θ ∈ {0o, 45o, 90o, 135o}, distance d = 1 and 16 bins. Table II

shows the dimensionality information of each feature. In order

TABLE II
NUMBER OF FEATURES (DIMENSIONS) USING EITHER THE DIRECT PIXEL

INTENSITIES AS FEATURES OR THE FEATURES EXTRACTED BY IMAGE

DESCRIPTION METHODS.

Name
Descriptor Dimensionality

V H Z

Pixel Intensity 1, 152, 000 2, 049, 000 26, 223, 000

LBP 256 256 256

GLCM 48 48 48

HOG 36 36 36

to evaluate the robustness of the extracted features, we can

use them to train a classifier and generate a model capable of

distinguishing valid and attack videos, and test the model ef-

fectiveness. In this paper, we use two classification techniques:

SVM and PLS. For SVM, we use the LibSVM [41] implemen-

tation and we analyze the radial basis function kernel, whose
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parameters were found using LibSVM’s built-in grid search

algorithm. For PLS, we use the DetectorPLS method [42] and

we analyze different numbers of factors. The factors are latent

variables that give us the best predictive power and they are

extracted from a set of independent variables and are used to

predict a set of dependent variables. The interested reader may

refer to [42] for more details on factor choices in PLS.

C. Experiment I: Finding the Best Configuration

The objective here is to find the best configuration of our

method and to evaluate the classifiers, visual rhythm setups

and filters through the analysis of variance to assess which

of these parameters present higher in influence. In addition,

we evaluate other important feature characterization methods

found in the literature, namely Local Binary Pattern Histogram

(LBP) and Histogram of Oriented Gradient (HOG) descriptors.

Although we have considered the visual rhythms as texture

maps, it is worth analyzing the use of shape descriptors such

as HOG as well. With this experiment, it is possible to discover

whether considering the visual rhythms as texture maps is

the best choice. We carried out these experiments using the

Protocol I and considering the sets of attacks with videos

recaptured by all cameras.

After performing statistical analysis with ANOVA and

Tukey’s HSD (Honestly Significant Difference) test in the

results shown in Table III, the following conclusions can

be drawn: (1) GLCM descriptor performance is statistically

different from its HOG and LBP counterparts, as shown in

Fig. 9. As it outperforms the other descriptors with statistical

significance, we can conclude that GLCM was able to extract

the most discriminative information from the visual rhythms

as texture maps better than its counterparts; (2) both Gaussian

and Median filters used in this work to generate Noise Residual

Videos (νNR) did not produce statistically different results

(figure now shown here); (3) methods for building the visual

rhythms did not present results with differences statistically

significant (See Fig. 10); and (4) with respect to the classifi-

cation algorithm used in this work, we do not find statistical

differences between the use of the SVM and PLS algorithms

(figure not shown here). It is noteworthy that both ANOVA

and TukeyHSD’s tests allow us to reject the hypothesis of

equality between comparisons, but not accept the hypothesis

that they are equal, in cases that no statistical differences were

found. Therefore, the best configuration considered is the one

using Median filter, Horizontal and Vertical visual rhythms

combined, GLCM descriptor to extract texture information

from visual rhythms, and the PLS classification algorithm.

D. Experiment II: Influence of the Biometric Sensors

This experiment aims at checking whether the presented

method works well in different facial biometric systems (bio-

metric sensors). Experiments performed with only one kind

of biometric sensor does not guarantee a broad evaluation of

our method. Although this is not a common practice in the

literature, we believe that experiments with several biometric

sensors is an essential practice to evaluate countermeasure

TABLE III
RESULTS (AUC) OF THE EXPERIMENT IN WHICH WE FIND THE BEST

CONFIGURATION OF OUR METHOD CONSIDERING ALL POSSIBLE SETUPS.

PLS SVM

Desc. V. Rhythms Gaussian Median Gaussian Median

GLCM

V 59.65% 84.33% 68.57% 74.86%

H 76.27% 86.29% 76.09% 72.55%

V + H 77.74% 91.43% 74.90% 65.28%

Z 90.92% 80.23% 83.22% 63.59%

LBP

V 61.21% 72.29% 56.06% 65.95%

H 62.75% 63.55% 70.02% 67.76%

V + H 64.61% 70.81% 70.97% 73.44%

Z 67.44% 55.70% 64.65% 57.36%

HOG

V 68.75% 54.68% 67.86% 67.90%

H 54.68% 64.76% 50.61% 66.88%

V + H 57.73% 73.72% 66.96% 73.54%

Z 65.54% 65.54% 52.35% 52.35%
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Fig. 9. Differences in mean levels of the results obtained by the different
descriptors used in this work and their confidence intervals for 95% family-
wise confidence level. There are statistical difference between the comparisons
whose confidence intervals do not include zero.
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Fig. 10. Differences in mean levels of the results obtained by the visual
rhythms considered in this work and their confidence intervals for 95% family-
wise confidence level. There are statistical difference between the comparisons
whose confidence intervals do not include zero.

methods, because the artifact levels inserted into the biometric

samples depend, among other factors, on the quality of the

acquisition sensor. Using the Protocol II, we evaluate the

proposed method in its best configuration (see Table IV).

When we vary the cameras used in the training, we have a

variation in the method generalization. For instance, consider-

ing the best and worst results shown in the Table IV, we have

a relative error reduction of 79.50%. Though it is evident the

in influence of the biometric sensor with this variation in the

classification results, we performed the Wilcoxon Signed Rank
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TABLE IV
RESULTS (AUC) OF THE EXPERIMENT ANALYZING THE INFLUENCE OF THE BIOMETRIC SENSORS USING A PLS CLASSIFIER AND MEDIAN FILTER.

Training

Sony Sony Sony Sony Sony Sony Canon Canon Canon

Canon Canon Canon Kodak Kodak Olympus Olympus Olympus Kodak

Kodak Panasonic Olympus Panasonic Olympus Panasonic Panasonic Kodak Panasonic

Test

Nikon Nikon Nikon Nikon Nikon Canon Sony Sony Sony

Olympus Olympus Kodak Canon Canon Kodak Kodak Nikon Nikon

Panasonic Kodak Panasonic Olympus Panasonic Nikon Nikon Panasonic Olympus

AUC 91.43% 90.48% 86.89% 89.66% 96.12% 91.85% 81.07% 86.84% 84.25%

test to prove this influence, with which we obtained a p-value

of 0.0039 and hence confirmation that the values shown in

Table IV are indeed statistically different.

E. Experiment III: Influence of the Display Devices

The aim of this experiment is to check whether the presented

method is able to detect attacks with different display devices,

that is, whether the display devices produce different amounts

of display artifacts (the main artifacts produced are flickering,

mooring and banding effect). This is an important question to

be answered because if the method is not robust to different

devices, learning techniques considering an open scenario

could be considered [43], given that in this case the classifier

should be able to recognize attacks with display devices for

which it has no prior knowledge.

Considering Protocol III, this experiment was performed in

two rounds: firstly, we train a classifier with attacks performed

with three display devices and tested it with the other three

display devices to evaluate the model found by the classifier.

Secondly, we switch the sets and redo the analysis. In both

cases, we considered the best configuration of our method.

The results reported in Table V correspond to the average (x)

and stdev (s) of the results obtained in the two rounds for each

configuration of the method.

The influence of the display devices are evidenced when

the results obtained in the two rounds of experiments are

discrepant or whether they are statistically different, indicating

that the method was not able to detect attempted attacks per-

formed with unknown display devices. To verify whether the

differences in the results are statistically significant, we carried

out a hypothesis test for two unpaired or independent samples.

Once the sample values are nominal, the most appropriate

statistical test is χ2 test for two samples whose values are also

shown in all tables, considering a confidence level of 95%.

The p-value produced for the χ2 tests evaluate whether two

samples are statistically different (p-value < 0.05). According

to results shown in Table V, we have obtained a p-value

lower than α = 0.05, for some cameras. In these cases, the

differences were statistically significant, which leads us to the

conclusion that the display device plays an important role in

the spoofing detection task.

F. Experiment IV: Comparison to a State-of-the-Art Method

for Photo-Based Spoofing Attack Detection

In the final round of experiments concerning the UVAD

database, we compare our method to the one proposed in [5].

We considered the Protocol I to compare both methods. It

was not possible to run the algorithm by Schwartz et al. by

using the same parameters described in [5] due to the high

dimensionality of the data their method produces, even on

a machine with 48GB of RAM. The dimensionality of the

feature vector generated by the original algorithm is higher

than five million dimensions for each video frame.

In order to reduce the dimensionality of the feature vectors,

we applied the HOG descriptor with blocks of sizes 16 × 16
and 32 × 32 with strides of 16 and 32 pixels, respectively.

The other parameters were set as described in [5]. With this,

we were able to reduce the feature vector dimensionality

to 8, 880 dimensions. Table VI shows the results obtained

by using the algorithm in [5] and our method, considering

the configuration that yielded the lowest classification error.

Furthermore, the computational time spent by the algorithm

in [5] was ≈ 237 hours to process all the data, whereas the

method proposed in this work spent ≈ 72 hours. According to

McNemar statistical test, the result obtained by the methods

are statistically different. All experiments were conducted on

an Intel Xeon E5620, 2.4GHz quad core processor with 48GB

of RAM under Linux operating system.

With this experiment, we can conclude that our method

better characterized video-based attacks while being more

efficient and suitable for different classification techniques,

once it provides more compact feature representations.

TABLE VI
COMPARISON BETWEEN [5] AND THE METHOD PROPOSED IN THIS WORK

IN ITS BEST SETUP (USING COMBINED VISUAL RHYTHM, MEDIAN FILTER

AND A PLS CLASSIFIER).

AUC (%)

Schwartz et al. [5] 90.52%

Our method 91.43%

Error Reduction 9.60%

G. Experiment V: Evaluation of the Method in the Replay-

Attack Database

In this experiment, we evaluate our method on the Replay-

Attack database (c.f., II-A4) which contains photo-based and

video-based spoofing attacks. The goal of this experiment is

to verify the effectiveness of our method on these several

types of attacks. We use the experimental protocol described

in [14], whose results are shown in Table VII. Although our
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TABLE V
RESULTS (AUC) OF THE EXPERIMENT ANALYZING THE INFLUENCE OF THE DISPLAY DEVICES USING A PLS CLASSIFIER AND MEDIAN FILTER.

Sony Canon Nikon Kodak Olympus Panasonic

X ✗ ✗ X ✗ X

p–value = 0.0 p–value = 1.0 p–value = 1.0 p–value = 0.0 p–value = 0.574 p–value = 0.015

x = 92.70% x = 99.34% x = 98.61% x = 96.42% x = 84.57% x = 97.53%

s = 0.23% s = 0.91% s = 1.36% s = 0.76% s = 14.33% s = 2.81%

method is designed for video-based spoofing attack detection,

we have obtained a promising AUC of ≈ 93%. For reference,

in [14], the authors reported a Half Total Error Rate (HTER)

of 34.01% and 15.16%, using a χ2 and SVM classifier,

respectively, to classify LBPu2
3×2 features, while our method

yields an HTER of 14.27%. We use a Gaussian filter with

µ = 0, σ = 0.5 and size 3 × 3, and a Median filter with

size 3 × 3. These parameters were empirically obtained by

using the Replay-Attack Database. With this experiment, we

can conclude that the proposed method is able not only to

detect video-based spoof attacks but also video print-attacks.

Finally, one can notice that, in particular, the zig-zag char-

acterization method does not lead to the best result in this

dataset. We believe the reason is that the Replay-Attack [14]

is a dataset based on print photograph recaptures (still image

attacks) which, when recaptured, tend to concentrate visual

information in the center of the Fourier transformed domain

as depicted in Fig. 11. This tends to favor the vertical and

horizontal visual rhythms as they concentrate on these areas.

The contrary happens with video attacks since the peaks in

the Fourier transformed domain will be more spatially spread

over each frame, as shown in Fig. 5. Result obtained by the

TukeyHSD’ test confirm that difference between V+H and Z

visual rhythms are statistically significant (p-value=0.03).

TABLE VII
RESULTS (AUC) FOR THE TEST SET OF THE REPLAY-ATTACK DATABASE

Visual Rhythms
PLS classifier SVM classifier

Median Gaussian Median Gaussian

V 83.99% 89.01% 86.26% 91.56%

H 81.98% 85.66% 80.67% 73.36%

V + H 90.69% 92.98% 92.01% 91.81%

Z 78.39% 85.35% 86.56% 77.72%

(a) (b)

Fig. 11. Example of a video frame of the spectra generated from (a) a valid
access video of the Replay-Attack database and (b) a video of an attempted
attack of the same dataset. Note a concentration of information on the center
rather than spread over as for the videos case shown in Fig. 5.

VI. CONCLUSIONS AND FUTURE WORK

Biometric authentication systems have been shown to be

vulnerable to spoofing attacks in the sense that impostors can

gain access privileges to resources as valid users. Spoofing

attacks to a face recognition system can be performed by

presenting it a photograph, a video, or a face mask of a

legitimate user.

This paper proposed and evaluated a spatio-temporal

method for video-based face spoofing detection through the

analysis of noise signatures generated by the video acquisition

process, which can be used to distinguish between valid

and fake access videos. Noise properties are captured using

Fourier spectrum for each frame of the video. A compact

representation, called visual rhythm, is employed to detect

temporal information in the Fourier spectrum. Three different

video traversal strategies were considered to form the visual

rhythms, of which horizontal and vertical combined was

shown to be the most effective. Features were extracted

from the visual rhythms through GLCM, LBP and HOG

descriptors to allow a proper distinction between fake and

real biometric data. The GLCM method was shown to be the

most discriminative and compact feature representation for

visual rhythm description.

An extensive data set, containing real access and spoofing

attack videos, was created to evaluate the proposed method, as

well as the state-of-the-art approaches. Through the conducted

experiments, it is possible to conclude that the display devices

and biometric sensors play an important role in the spoofing

detection task. These findings are very important in making the

future anti-spoofing methods more effective and guiding the

development of new databases which must be more realistic, as

the UVAD Database proposed in this paper. The proposed anti-

spoofing method provided competitive or even superior results

in the tests when compared to state-of-the-art approaches.

Although this paper represents a step toward solving the

spoofing problem, it makes it clear that the problem is not

fully-solved yet and poses new questions on future methods

regarding how to better handle and tackle with new attacks due

to the ever-growing market of acquisition and display devices

such as hight quality monitors, hand-held and smartphone

devices. In this sense, the dataset provided in this paper will

be available at the IEEE Information Forensics and Secu-

rity Technical Committee website (http://tinyurl.com/pas4t9r)

and also registered with a proper DOI through FigShare

(http://figshare.com/) in order to advance the frontier of re-

search in spoofing detection.

Future research efforts branch out into devising other spatio-

temporal descriptors that capture motion telltales associated
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with the recapture process as well as verifying other liveness

detection problems other than face recognition such as video

recapturing, piracy detection, among others [44].
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