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Abstract—Despite important recent advances, the vulnerability
of biometric systems to spoofing attacks is still an open problem.
Spoof attacks occur when impostor users present synthetic
biometric samples of a valid user to the biometric system seeking
to deceive it. Considering the case of face biometrics, a spoofing
attack consists in presenting a fake sample (e.g., photograph,
digital video or even a 3D mask) to the acquisition sensor
with the facial information of a valid user. In this paper, we
introduce a low-cost and software-based method for detecting
spoofing attempts in face recognition systems. Our hypothesis
is that during acquisition there will be inevitable artifacts left
behind in the recaptured biometric samples allowing us to create
a discriminative signature of the video generated by the biometric
sensor. To characterize these artifacts, we extract time-spectral
feature descriptors from the video, which can be understood
as a low-level feature descriptor that gathers temporal and
spectral information across the biometric sample and use the
visual codebook concept to find mid-level feature descriptors
computed from the low-level ones. Such descriptors are more
robust for detecting several kinds of attacks than low-level ones.
Experimental results show the effectiveness of the proposed
method for detecting different types of attacks in a variety of
scenarios and datasets including photos, videos and 3D masks.

Index Terms—Face spoofing attack detection, mobile device,
face biometric system, spectral analysis, visual codebook, time-
spectral visual features.

I. INTRODUCTION

Nowadays, the protection of personal data has become a

fundamental requirement of security. According to Tipton [1],

information security is concerned with the development of

methods and tools for protecting information and preserving

the value it has for an individual or an organization. For an

efficient and effective protection, the use of robust authentica-

tion mechanisms is paramount.

Knowledge-based methods (e.g., password, secret question)

and token-based methods (e.g., smart cards, token code) are

probably the most used authentication mechanisms to date.

However, both methods have a critical feature: at the time of

authentication, the system does not verify who is requesting

access, but rather what the users know or possess. This renders

the system vulnerable, since that knowledge or an object

can easily be lost, shared or manipulated. As an alternative,

biometrics is an authentication mechanism considered more

natural and reliable as it focuses on verifying who is the person

requesting the access [2]. Biometrics provides methods for

recognizing humans automatically based on behavior, physical

or chemical traits, being fingerprint, face, iris, hand geometry,

hand vein, voice and DNA, the most common traits used [2].

Although there are several traits that can be used to perform

user authentication, researchers are constantly looking for

biometric traits with low acquisition and storage costs, that

are less invasive, present a high degree of uniqueness and are

stable. However, the static nature of a stable biometric trait

suggests “the paradox of secure biometrics” [3]:

“An authenticator must be stable and distinctive to

be considered a good authenticator. But, stability

leaves no option for compromise recovery, since

users cannot change their biometric trait if stolen.

Moreover, since a biometric clue is not secret, its

information can be learned and copied.”

Although a stable biometric trait is an ideal authenticator, in

practice, its use would not work if it were learned or copied.

Therefore, researchers have striven to develop methods that

detect whether a biometric sample presented to the acquisition

sensor is a replica of the original sample. In the literature, the

action of presenting a synthetic biometric sample of some valid

user to the acquisition sensor in order to authenticate itself as

a legitimate user is known as spoofing attack.

Among several forms of biometric, face recognition is of

paramount importance with outstanding solutions presented

thus far such as deformable models [4], texture-based repre-

sentations [5], and shape-based representations [6]. Although

effective in many cases, according to Maltoni et al. [7], face,

signature and voice are the easiest biometric signals to be cir-

cumvented. For instance, spoofing attacks can be successfully

accomplished in a face biometric system if an impostor obtains

access by presenting to the acquisition sensor a photography,

digital video or a 3D model of the target person [2]. Even

with recent advances in biometrics, information forensics and

security, the vulnerability of facial biometric systems against

spoofing attacks is still an open problem.

During the production of the synthetic biometric data,

inevitably, there are noise information and telltales added to

the biometric signal that can be captured and further processed

to pinpoint attacks. In fact, in the manufacturing process of a

synthetic sample, there are, at least, two re-quantization steps

of the original biometric signal. In photo- and mask-based face

spoofing attacks, the continuous signal is quantized during the

digitization process. Then, this digital version is re-quantized

due to the printing process with 2D and 3D printers and again

digitized during the presentation of the synthetic data to the

acquisition sensor. In video-based face spoofing attacks, the

continuous signal is digitized and recaptured by the acquisition

sensor during the attack.

Recent works [8]–[10] show that noise and artifacts such as

blurring effects, printing artifacts, banding effects, and Moiré

patterns are added to the synthetic biometric samples during

their manufacture and recapture. In this paper, we propose a

spatio-temporal algorithm that captures such effects along time
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Fig. 1. Main steps of the proposed method. Given a training set consisting
of valid access and attempted attack videos, and also a testing video, we
first extract a noise signature from every training video, generating a residual
noise video, and calculate its spectrum video. Then, we extract time-spectral
descriptors from spectrum videos (low-level representation), which are used to
generate a visual codebook. With the visual codebook at hand, we transform
the low-level descriptors in time-spectral visual word descriptors (mid-level
representation). Finally, these mid-level descriptors are used to find parameters
of the classification model, which are employed to predict whether a given
testing video is an attempted attack.

to provide an effective discriminative signature for valid access

and spoofing attempts. In summary, the main contributions of

this paper are:

• a new method for extracting temporal and spectral infor-

mation from face biometric samples, referred to as time-

spectral descriptors;

• evaluation of the visual codebook model, also referred to

as Bag-of-Visual-Word model, for creating a mid-level

representation from time-spectral descriptors, referred to

as time-spectral visual words; and

• a low-cost solution for spoofing detection, illustrated in

Figure 1, that does not rely on the user interaction or on

extra hardware (e.g., infrared, motion or depth sensors)

to detect different types of synthetic samples or attacks

(e.g., photos, videos and masks) and is amenable to

be implemented in computational devices such as PCs,

handheld, and embedded systems.

We organize the remaining of this paper as follows. Sec-

tion II discusses state-of-the-art methods for face spoofing

attack detection. Section III presents our method for spoofing

attack detection. Section IV shows and discusses the experi-

mental protocol and the obtained results. Finally, Section V

concludes the paper and discusses possible future work.

II. RELATED WORK

The existing techniques for detecting spoofing on face

recognition methods can be roughly categorized into four

groups: user behavior modeling, user cooperation, methods

that require additional hardware and methods based on data-

driven characterization. The first aims at modeling the user

behavior with respect to the acquisition sensor (e.g., eye

blinking or small head and face movements) to decide whether

a captured biometric sample is synthetic. Methods based on

user cooperation can be used to detect spoofing by means

of challenge questions or by asking the user to perform

specific movements, which adds extra time and removes the

naturalness inherent to facial recognition systems. Techniques

that require extra hardware (e.g., infrared cameras or motion

and depth sensors) use the additional information generated by

these sensors to detect possible clues of an attempted attack.

Finally, methods based on data-driven characterization exploit

only the data captured by the acquisition sensor looking for

evidence and artifacts that may reveal an attempted attack.

In [11]–[13], the authors proposed a solution for detecting

photo-based attacks by eye blinking modeling under the as-

sumption that an attempted attack with photographs differs

from valid access by the absence of movements. Bao et

al. [14] and Kollreider et al. [15] proposed a method based

on the analysis of the characteristics of the optical flow field

generated for living faces and photo-based attacks. As a living

face is a 3D object and a photograph is a planar object, these

methods analyze sequential images to detect facial movements,

facial expressions or parts of the face such as mouth and

eye. Pan et al. [16] extended upon [11] including contextual

information of the scene (clues outside of the face) and eye

blinking (clues inside the face region).

Methods that use extra hardware have also been considered

in the literature. Sun et al. [17] proposed a solution based

on thermal IR spectrum modeling the face in the cross-

modality of thermal IR and visible light spectrum by canonical

correlation analysis. Recently, Erdogmus et al. [18] evaluated

the behavior of a face biometric system protected with anti-

spoofing solutions [8], [19] and the Microsoft’s Kinect under

attempted attacks performed with static 3D masks. Although

these approaches were successful, techniques requiring extra

hardware devices have the disadvantage of not being possible

to implement in computational devices that do not support

them, such as smartphones and tablets.

Turning our attention to the data-driven characterization

methods, we can identify three different approaches explored

in the literature: methods based on frequency analysis [9], [20],

[21], texture analysis [8], [10], [22]–[26], and the ones based

on motion and clues of the scene analysis [27]–[31]. We shall

briefly review these approaches in the next sections. For further

reading on the problem, we recommend Galbally et al.’s

survey [32] and Marcel et al.’s handbook [33].

A. Frequency-based approaches

Li et al. [20] explored the fact that faces in photographs

are smaller than the real ones and that the expressions and

poses of the faces in the photographs are invariant to devise a

method for detecting photo-based attempted attacks.

Pinto et al. [9] proposed a method for detecting attacks per-

formed with videos using visual rhythm analysis. According to

the authors, in a video-based spoofing attack, a noise signature

is added to the biometric samples during the recapture of the
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videos of attacks. The authors isolated the noise signal using a

low-pass filter and used the visual rhythm technique to capture

the temporal information of the video.

Lee et al. [21] proposed a method based on the frequency

entropy of image sequences. The authors used a face verifi-

cation algorithm to find the face region, normalized the RGB

channels using z-score technique, and applied the independent

components analysis (ICA) method to remove cross-channel

noise caused by interference from the environment. Finally,

the authors calculated the power spectrum and analyzed the

entropy of the channels individually. Based on a threshold, the

authors decide whether a biometric sample is synthetic or real.

B. Texture-based approaches

Tan et al. [10] proposed a solution for detecting attacks with

printed photographs motivated by the difference of the surface

roughness of an attempted attack and a real face. The authors

estimate the luminance and reflectance of the image under

analysis and classify them using Sparse Low Rank Bilinear

Logistic Regression methods. Their work was further extended

by Peixoto et al. [22] by incorporating measures for different

illumination conditions.

Määttä et al. [8] explored micro textures for spoofing

detection through the Local Binary Pattern (LBP). To find a

holistic representation of the face, able to reveal an attempted

attack, Schwartz et al. [23] proposed a method that extracts

different information from images (e.g., color, texture and

shape of the face). Results of both techniques were reported in

the Competition on Counter Measures to 2D Facial Spoofing

Attacks [34], with an HTER of 0.00% and 0.63%, respectively,

upon the Print Attack Database [31].

Chingovska et al. [28] investigated the use of different

variations of the LBP operator used in [8], such as LBPu2
3×3,

tLBP , dLBP and mLBP. The histograms generated from these

descriptors were classified using χ2 histogram comparison,

Linear Discriminant Analysis and Support Vector Machine.

Face spoofing attacks performed with static masks have also

been considered in the literature. Erdogmus et al. [35] explored

a database with six types of attacks using facial information

of four subjects. To detect attempted attacks, the authors used

two algorithms based on Gabor wavelet [4], [36] with a Gabor-

phase based similarity measure [37].

Similarly to Tan et al. [10], Kose et al. [38] evaluated a

solution based on reflectance to detect attacks performed with

masks. To decompose the images into components of illumi-

nation and reflectance, the Variational Retinex [39] algorithm

was applied.

Pereira et al. [40] proposed a score-level fusion strategy

for detecting various types of attacks. The authors trained

classifiers using different databases and used the Q statistic

to evaluate the dependency between classifiers. In a follow-up

work, Pereira et al. [41] proposed an anti-spoofing solution

based on the dynamic texture, a spatio-temporal version of the

original LBP. Results showed that LBP-based dynamic texture

description has a higher effectiveness than the original LBP,

which reinforces the idea that temporal information is of prime

importance to detect spoofing attacks.

C. Motion-based approaches

Tronci et al. [27] explored the motion information and clues

that are extracted from the scene by combining two types of

processes, referred to as static and video-based analysis. The

static analysis consists in combining different visual features

such as color, edge, and Gabor textures, whereas the video-

based analysis combines simple motion-related measures such

as eye blink, mouth movement, and facial expression change.

Anjos et al. [31] proposed a method for detecting photo-

based attacks assuming a stationary facial recognition system.

According to the authors, the intensity of the relative motion

between the face region and the background can be used as

a clue to distinguish valid access of attempted attacks, since

that motion variations between face and background regions

exhibit greater correlation in the case of attempted attacks.

In contrast with the methods described in this section, we

present in this work a new anti-spoofing solution based on a

temporal characterization of the frequency components from

the noise signal extracted from videos. Furthermore, to the best

of our knowledge, this was the first attempt of dealing with

visual codebooks to find a mid-level representation useful for

face spoofing attack detection.

III. PROPOSED METHOD

In this section, we introduce a method for detecting different

forms of face spoofing attacks. The method comprises three

main steps: low-level descriptor extraction, mid-level descrip-

tor extraction, and classification. Fig. 1 illustrates these steps,

which we explain in details in the following sections.

We designed the algorithm based on the fact that synthetic

biometric samples contain noise and artifacts generated during

their manufacture and recapture that are different from any

pattern found in real biometric samples. According to Tan

et al. [10] and Määttä et al. [8], there is a deterioration of

the facial information and, consequently, a loss of some high

frequency components during the manufacture of photographs

to be used in spoofing attacks. In our prior work [9], we

highlighted the fact that there is a significant increase of

the low frequency components due to the blurring effect

added during the recapture process of the biometric sample

displayed in tablets, smartphones and laptop screens. Besides

the blurring effect, other artifacts are added such as flickering,

Moiré patterns, and banding effect [42].

These facts motivated us to propose a solution that takes

advantage of the noise and artifacts contained on such fake

biometric samples, which heretofore we refer to as a noise

signature. We perform a Fourier analysis of the noise signature

to capture the information encoded in the frequency, phase and

amplitude of the component sinusoids [43]. In this paper, we

use Fourier spectrum to quantify the following artifacts:

• blurring artifact: In both the production and recapture

processes, inevitably we have a decrease in the details of

biometric samples due to re-quantization of the original

signal. This reduction of details is reflected in the increase

of low frequency components and can be observed in the

Fourier domain;

• flickering effect: It corresponds to the horizontal and ver-

tical lines equally spaced that appear during the recapture
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process of the samples shown to the acquisition sensor

with the display device. When this artifact appears in

biometric samples, there are peak lines at abscissa and

ordinate axes of the Fourier spectrum when the display

device is aligned with the acquisition sensor;

• Moiré pattern: They are irregular patterns that can appear

when a display device is used to perform an attempted

attack. As a result, we also have the appearance of peaks

in different locations in the Fourier spectrum depending

on the frequency and direction of the sinusoid in the

spatial domain [43].

The novelty of our solution is in the two-tier low and

mid-level characterization scheme, called time-spectral visual

words, that captures patterns present in such noise signatures

useful to reveal spoofing attacks. For this, we extract temporal-

spectral descriptors from the noise signature transformed to the

frequency domain and create a mid-level representation for

them using the concept of visual codebooks [44], [45]. Visual

codebooks are a method for constructing mid-level representa-

tions widely employed in several applications in pattern recog-

nition and computer vision, such as object recognition [46],

gesture recognition [47], and information retrieval [48], among

others. However, unlike existing methods, we obtain visual

informative features from the noise signature present in the

videos instead of their raw pixels or from objects in the scene.

A. Low-Level Descriptor Extraction

In our previous work [9], we found that the noise signal is

an important source for low-level discriminative features for

spoofing detection. When working with the noise signal and

discarding the video content, we minimize possible negative

impacts on the method performance. Next, we present the steps

of the proposed method to compute the low-level descriptors.

1) Calculation of the Residual Noise Videos: The low-level

representation of the videos is computed through the spectrum

analysis of the noise signal in the frequency domain. To isolate

the noise signal of a given video V , we filter a copy of V using

a Gaussian filter with mean µ, std. σ, and kernel size k×k to

remove the high frequency components, generating a filtered

video. Then, we perform a subtraction operation between the

input video and its filtered version, generating a new video,

called Residual Noise Video (VRN ):

V
(t)
RN = V (t) − h(V (t)) ∀ t ∈ T = {1, 2, . . . , t}, (1)

where V (t) ∈ N
2 is the t-th frame of V and h is a filter whose

impulse response is a Gaussian function.

2) Calculation of the Fourier Spectrum Videos: After cal-

culating the residual noise videos, we can analyze the noise

pattern and possible artifacts contained in the biometric sam-

ples by applying the 2D Discrete Fourier Transform to each

frame of the VRN using Eq. 3. In this work, we evaluate two

important characteristics of the noise signal in the frequency

domain, the magnitude and phase of the signal. The analysis

of these two characteristics is performed by calculating the

magnitude spectrum (Eq. 5) and phase spectrum (Eq. 6), with

the origin at the center of the frame. In both cases, the result

is a Fourier spectrum video.

F(VRN(x, y)) ≡ F (v, u) (2)

F (v, u) =

M−1
∑

x=0

N−1
∑

y=0

VRN(x, y)e
−j2π[(vx/M)+(uy/N)]

(3)

|F (v, u)| =

√

R(v, u)2 + I(v, u)2 (4)

VMS(v, u) = log(1 + |F (v, u)|) (5)

VPS(v, u) = arctan

(

I(v, u)

R(v, u)

)

(6)

From the Fourier spectrum video, we can extract spectral

and temporal information relevant to the spoofing attack

detection. In the case of the spectral information, we need to

capture peaks present in the central region caused by artifacts

that reduce some details in the scene (e.g., skin marking, edge

information) such as blurring effect, defocus, and printing

artifacts and peaks present in the peripheral region of the

frame caused mainly by artifacts such as the banding effect

and Moiré pattern, which appear during the recapture of the

biometric information during an attack.

Figs. 2 and 3 show an attempt to depict the temporal

disturbances added to the biometric samples during attacks.

In this example, we extract the first ten consecutive frames of

an attack video and of a valid video for the same client, and

calculate their respective magnitudes spectra from the residual

noise video. In addition, Fig. 4 shows examples in which we

have frames extracted from valid access videos (a) and spoof

attack videos (b-c). In this figure, we aim at showing the Moiré

and blurring effects found in attempted attacks performed with

a mobile device. The blurring effect is present in the magnitude

spectrum with an increase of the low frequency components,

whereas the Moiré effect is present in the magnitude spectrum

with peaks in the horizontal center region of the frames. It

is hard to find a direct mapping of the effects to the phase

spectra, but we can see clearly that there are disturbances in the

phase spectra calculated from attempted attack frames when

compared to phase spectra extracted from valid access frames.

It is important to remark that we are not proposing a method

for capturing each of the artifacts separately. We believe that

the presence of one or more artifacts causes disturbances in the

frequency components in the Fourier domain and the proposed

method aims at describing and capturing this disturbance in

space and time.
3) Computation of the time-spectral descriptor: Due to the

dynamics involved in the appearance of artifacts and noise in

the synthetic biometric samples and the spectral information,

the temporal information becomes important to detect spoofing

attacks. Therefore, we design a feature descriptor that gathers

temporal and spectral information from an input video. We

extract n temporal cubes of size of w × h× t (blocks of size

w×h of t frames) from the Fourier spectrum video. The idea

of temporal cubes has been somewhat explored to quantify

temporal information in other tasks in computer vision [49]–

[51]. In all cases, it always boils down to designing important

discriminative features for capturing the event of interest. In

this paper, we design new ideas for spoofing detection.

The computation of the measure over temporal cubes can be

performed on each frame separately, hereinafter referred to as
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(a) Original frames

(b) Residual noise frames

(c) Magnitude spectra

Fig. 2. (a) Original frames extracted from a valid access video, (b) their respective residual noise frames and (c) magnitude spectra.

(a) Original frames

(b) Residual noise frames

(c) Magnitude spectra

Fig. 3. (a) Original frames extracted from an attempted attack video, (b) their respective residual noise frames and (c) magnitude spectra.

(a) Examples of a frame extracted from valid access video

(b) Examples of frames extracted from a mobile-attack videos. We highlighted the Moiré effect with yellow
circle in the original image and its respective residual noise frame. The arrows on the magnitude spectrum
indicate the effect of the Moiré effect over Fourier spectrum

(c) Examples of frames extracted from a mobile-attack videos. In this frame, we show a blurring effect in
the original image and its effect in the residual noise frame. The arrows on the magnitude spectrum show
the impact of this effect over Fourier spectrum

Fig. 4. Examples of valid access and attempted attack videos. The first column shows the original frame extracted from a video and the second column shows
the residual noise frame calculated from the original frames. Finally, the third and fourth columns show the magnitude and phase spectrum, respectively. Note
that the phase spectra calculated from valid access frames are different from attempted attack frames.
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spatial measures, or between consecutive frames, hereinafter

referred to spatio-temporal measures. Examples of spatial

measures that can be used are energy and entropy of the signal,

which quantify the signal size and amount of information,

respectively. As examples of spatial-temporal measures, we

can mention correlation and mutual information, which are

applied to measure dependence between consecutive frames.

At the end of this process, we have a set of n time-spectral

descriptors of t dimensions, for each video. As spatio-temporal

measures are applied on consecutive frames, this process yield

n time-spectral descriptors of (t− 1) dimensions each.

B. Mid-Level Descriptor Extraction

To find a robust representation for the low-level feature

descriptors, with less sensitivity to the intra- and extra-

class variations, we use the Bag-of-Visual-Word (BoVW)

model [44], which maps the low-level features onto a more

discriminative mid-level representation. Methods based on the

BoVW model can be understood in the following steps: visual

codebook generation, coding, and pooling.

1) Visual Codebook Generation: The generation of the

visual codebook consists in the selection of time-spectral

descriptors that are more frequent and representative con-

sidering all descriptors extracted from training videos. The

selected descriptors, called time-spectral visual words, form

the visual codebook. The selection can be performed using

two strategies: (1) random selection, whereby all descriptors

are pooled and m visual words are randomly chosen using a

uniform distribution; or (2) selection via clustering (e.g., k-

means) whereby all descriptors undergo a clustering process

and the m centroids found by the algorithm are used to form

the visual codebook. In both cases, we end up with a single

visual codebook, which is used to encode the low-level time-

spectral descriptors from videos.

Instead of pooling all descriptors extracted from videos

into a training set to build a single visual codebook, we can

build class-based visual codebooks. When creating class-based

visual codebooks, we consider the use of valid access and

attempted attack video descriptors separately in order to find

codebooks in each class. For each class-based codebook, we

use the same procedures described above for a single visual

codebook creation. The two visual codebooks are concatenated

to create the final codebook.

2) Coding: The coding process performs a pointwise trans-

formation of the low-level descriptors into another represen-

tation [52]. There are several strategies for coding being the

hard and soft assignments the most common. Given a visual

codebook and a low-level descriptor, the hard assignment

transforms such descriptor into a binary vector with only

one nonzero coefficient representing the visual word closest

to it. The soft assignment [53], in turn, gives a real valued

vector that represents the descriptor as a linear combination

of the visual words of the codebook, whose coefficients give

an associativity degree between the descriptor and the visual

words of the codebook [54]. In this paper, we evaluate these

two strategies for coding the low-level descriptors.

3) Pooling: The pooling process aims at summarizing

the information contained in the set of n mid-level feature

descriptors extracted from an input video into only one feature

descriptor to obtain its final representation. In the literature,

we have two common techniques to do that, known as sum-

pooling (Eq. 7) and max-pooling (Eq. 8). In this paper, we

evaluate these two strategies, as well.

v
(j)
i =

n∑

i=1

u
(j)
i ∀ j ∈ {1, 2, . . . ,m} (7)

v
(j)
i = maxiu

(j)
i ∀ j ∈ {1, 2, . . . ,m} (8)

C. Classification

After finding a new space representation for the videos in

the database, we use machine learning algorithms to find a

classification model to decide whether a sample is an at-

tempted attack or a valid access. In this paper, we evaluate the

Partial Least Square (PLS) [55] and Support Vector Machine

(SVM) [56] algorithms.

IV. EXPERIMENTS AND RESULTS

In this section, we present and discuss the experimental re-

sults and the validation of the proposed method. Section IV-A

shows details of the datasets used in the experiments while

Section IV-B describes the experimental protocols employed

in this work. Section IV-C shows the experimental setup of

the proposed method regarding its parameters. The exper-

iments in Section IV-D aim at validating our method and

choosing its best parameter setup. In addition, Section IV-D

addresses important questions regarding the low- and mid-level

descriptor extraction procedures: (1) the best characteristic

extracted from Fourier spectrum (e.g., magnitude or phase

spectrum); (2) the best measure for spectrum summarization

(e.g., energy, entropy, correlation, mutual information, etc);

and (3) the visual codebook size most appropriate for the

problem; among others. The remaining subsections compare

the proposed method with the best methods reported in

the literature including a challenging cross-dataset protocol,

whereby we train our method using a dataset and test it with

another dataset.

A. Datasets

In this work, we consider four datasets:

• Replay-Attack Dataset [28]: This dataset comprises

videos of valid accesses and attacks of 50 identities. The

videos were generated with a webcam with a resolution

of 320 × 240 pixels and 25 frames per second (fps).

This dataset contains 200 valid access videos, 200 print-

based attacks, 400 mobile-based attacks using an iPhone,

and 400 high-definition attacks using an iPad screen with

1, 024× 768 pixel resolution.

• CASIA Face Anti-Spoofing Dataset [30]: This dataset

contains videos of valid accesses and attacks of 50
identities and considers different types of attacks such

as warped photo attacks and cut photo attacks, besides

the photos and video attacks. It also considers attacks

performed with different image/video quality: (1) low-

quality videos captured by a long-time-used USB camera
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with 480×640 pixel resolution; (2) normal-quality videos

captured with a new USB camera with 480 × 640 pixel

resolution; and (3) high-quality videos captured with a

Sony NEX-5 camera with 1, 920×1, 080 pixel resolution.

In total, it comprises 150 valid access videos and 450
video spoofing attacks.

• UVAD Dataset [57], [58]1: This dataset contains valid ac-

cess and attempted attack videos of 404 different people,

all created at Full HD quality, 30 fps, and nine seconds

long. It contains 16, 268 attempted attack videos and 808
valid access videos. Seven different display devices were

used to simulate the attempted attacks performed upon

three acquisition sensors of different manufacturers: a

9.1 megapixel (MP) Sony CyberShot DSC-HX1, a 10.0-

MP Canon PowerShot SX1 IS, a 10.3-MP Nikon Coolpix

P100, a 14.0-MP Kodak Z981, a 14.0-MP Olympus SP

800UZ, and a 12.1-MP Panasonic FZ35 digital camera.

Figs. 5 and 6 illustrate some examples of this dataset.

• 3DMAD Dataset [18]: This dataset comprises valid

access and mask attack videos of 17 different subjects,

whose faces were recorded by a Microsoft Kinect sensor.

To build a synthetic biometric sample, the authors used

frontal and profile face images to make the facial recon-

struction. Afterwards, the authors used a 3D printer to

build a mask containing facial information of the target

person. Spoofing attack simulations were performed by

presenting the 3D masks to the same Microsoft Kinect

sensor. In total, the authors generated 85 valid access

videos and 85 attempted attack videos.

B. Experimental Protocol

We use two measures for performance evaluation: the area

under the curve (AUC) and the half total error rate (HTER).

While the former quantifies the overall ability of a classifier

to discriminate between attempted attacks and valid accesses,

the latter combines the false acceptance rate (FAR) and false

rejection rate (FRR) in a specific operating point of the ROC

curve into a single measure. HTER is commonly calculated in

the operating point in which the FAR is equal to the FRR,

known as the Equal Error Rate (EER). We use the freely

available toolbox Bob [59] to calculate the AUC and HTER

values. Finally, the employed evaluation protocols follow the

ones proposed by the authors of the Replay-Attack, CASIA,

UVAD and 3DMAD datasets. The source code of all proposed

methods are freely available.2

1) Protocol I: In this experimental protocol, we use the

Replay-Attack dataset, which is divided into three subsets: a

training set with 300 attack videos and 60 valid videos; a

development set with 300 attack videos and 60 valid access

videos; and a test set with 400 attempted attack videos and

80 valid access videos. The training set is used to fit a

classification model, the development set to find the EER,

whereas the test set is used to report the final error rates.

1This dataset is freely available through FigShare
(http://figshare.com/articles/visualrhythm antispoofing/1295453).

2The source code is freely available for scientific purposes on GitHub
(https://github.com/allansp84/spectralcubes), along with this article.

2) Protocol II: In this protocol, we use CASIA dataset,

divided into two disjoint subsets: training and test sets. Due

to the absence of a development set to estimate a threshold

to be applied in the test set and afterwards to calculate the

HTER, the official protocol of this dataset recommends to use

the training set to build a classifier and then use the test set to

report the EER value. To report the results in terms of HTER,

the original training set was divided into two subsets, named

as training and development sets, in the proportion of 80%
and 20%, respectively. We use the new training set to find the

classification model and the development set to estimate the

threshold that gives us the EER, whereas the official test set

is used to report the final results in terms of HTER.

3) Protocol III: In this protocol, we use the UVAD dataset,

which contains six subsets comprising valid access and at-

tempted attack videos. Each subset considers attacks against

one acquisition sensor: Sony, Kodak, Olympus, Nikon, Canon

and Panasonic. Here, we train a classifier using the sensors

Sony, Kodak and Olympus, and we test it with videos (valid

access and attempted attacks) from three other different man-

ufacturers: Nikon, Canon and Panasonic.

4) Protocol IV: Here, we use the 3DMAD dataset to

evaluate spoofing detection of attacks using 3D masks. The

dataset contains 85 RGB videos that represent valid access

and 85 RGB videos that represent attempted spoofing attacks.

As this dataset does not contain explicit subsets, we randomly

partitioned the data into three subsets: training, development

and testing, and we use Protocol I for testing.

C. Method Parameterization

For reproducibility purposes, this section discuss the param-

eters whose values are constant in the setup of our method.

We extract the noise signature from RGB videos using a

Gaussian filter with µ = 0, σ = 0.5, and kernel size 3 × 3
(Eq. 1). These values were obtained empirically in [9]. Next,

we extract cuboids of size 32× 32× 8 from the Fourier spec-

trum videos (Eqs. 5 and 6), whose spatio-temporal location is

chosen randomly based on a uniform distribution.

The use of spatial measures produces low-level 8-

dimensional descriptors per channel, whereas the use of spatio-

temporal measures produces low-level 7-dimensional descrip-

tors per channel, which gives us a final low-level descriptor

of 24-dimensional and 21-dimensional, respectively. Finally,

the number of cubes extracted from videos is determined by

dividing the volume of the video with respect to the cube.

Regarding the mid-level descriptors, the only parameters

with constant values are the ones that define the Gaussian

kernel used in the soft-assignment coding technique, whose

values are µ = 0 and σ = 0.04. Finally, the SVM parameters

are found through grid search in the training data.

D. Experimental Design and Analysis

To find the best method configuration, we performed a

factorial experiment with replication (N = 3) followed by an

analysis of variance (ANOVA) [60]. Each experimental unit is

represented as a tuple of n objects, each one with a level of a

factor. Considering the replications, we have a total of 9, 216
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Fig. 5. Examples of valid access video frames for outdoor (first and second images on the left) and indoor (three images on the right) scenes.

Fig. 6. Examples of attempted attack video frames for outdoor (first and second images on the left) and indoor (three images on the right) scenes using Sony
(first and second columns), Canon (third and fourth columns) and Nikon (last column) cameras.

TABLE I
AFTER THE STATISTICAL ANALYSIS, WE HAVE FOUND THAT THE FACTORS HIGHLIGHTED WITH † ARE THE ONES THAT DID NOT PRESENT STATISTICAL

SIGNIFICANCE WHEN CONFIGURING OUR METHOD, WHEREAS THE LEVELS HIGHLIGHTED IN BOLD ARE THE CHOSEN LEVELS.

Factor Levels Description

LGF C, and W Strategies for extracting the low-level features from video of phase spectrum or video of magnitude spectrum:
extraction considering a central region (crop) in each frame (C) and the entire/whole frames (W).

M PE, PH, ME, MH, PMI,
MMI, PC, and MC

Characteristics of the frequency spectrum evaluated that can be the phase (P) or magnitude (M) and the measures
used for summarizing the spectral information that can be energy (E), entropy (H), mutual information (MI),
or correlation (C).

CS R, and K Mode of selection of the visual words that compose the visual codebooks: Random (R) or using k-means
clustering algorithm (K).

SDD† S and D Strategies for generating the visual codebooks: a single visual codebook (S) and class-based visual codebooks
(D), one for each data class (spoofing vs non-spoofing).

DS† 80, 120, 160, 200, 240,
280, 320, and 360

Visual codebook sizes. This is an important parameter because the visual codebook size gives us visual
codebooks with different degrees of specificities because large visual codebooks can incorporate small clusters
of data that appear sometimes in specific cases.

CP hardsum, hardmax and
softmax

We evaluate the combination of two strategies in the coding process (hard-assignment and soft-assignment)
and two strategies in the pooling process (max-pooling and sum-pooling).

C SVM and PLS Classification algorithms.

tuples, which are used to instantiate the proposed method. The

instances of the proposed method are evaluated through the

measurement of the value of the system response variable, the

AUC value, after running such instances using the Replay-

Attack dataset and Protocol I, using the development set. Next,

we collect obtained AUC values and then we performed an

ANOVA test to analyze the significance of the effects of the

parameters on the classification results.

With this approach, we can discover which parameters

significantly affect the system response variable and also the

best configuration of the method [61]. Henceforth, the method

parameters are referred to as factors and their values as levels.

Table I shows a brief description of the factors and their

respective levels we consider herein.

1) Low-Level Descriptor Extraction Parameter Analysis

(LGF and M): The low-level feature extraction has two im-

portant parameters: the frequency characteristics of the signal

(phase or magnitude), and the function used to summarize

the information of the temporal cubes extracted from a video.

In this work, we evaluate measures that describe spatial

information of the temporal cubes (energy an entropy), and

measures that describe the temporal behavior of the cubes

(mutual information and correlation across time).

To find which levels are statistically different for each factor,

we perform the Tukey’s HSD test (see Fig. 7). In Figs. 7(a)-

(b), the pairs in comparison whose confidence intervals do not

intercept the zero value are statistically different. Considering

the top-5 method configuration obtained in this experiment,

we conclude that the whole frame for extracting features is

more interesting than any cropped region in the center of the

frame. In addition, the characteristic extracted of the Fourier

spectrum and the summarization measure used to generate the

low-level feature descriptors have a great impact in the method

discriminability (Fig. 7(b)), as several comparisons in pairs of

features are statistically significant.

2) Mid-Level Descriptor Extraction Parameter Analysis

(CS, SDD, DS, and CP): To construct a discriminative visual

codebook, we need to choose the best strategy for selecting

the words that compose the visual codebooks (CS) as random

or clustering-based, the visual codebook size (DS), the policy

to create the visual codebooks (SDD) as single or class-based,

and the pooling and coding strategies (CP).

Fig. 8 shows the results of the post-hoc test with Tukey’s

HSD. In Fig. 8(a), we have the results of the statistical analysis

for DS parameter (dictionary size), to which was not found sta-

tistical significance. Therefore, we recommend that dictionary

size parameter to be optimized according to the application

of interest. In turn, Fig. 8(b) shows that different pooling and
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Fig. 7. Confidence interval on the differences between the means of the levels of the factors (a) LGF, and (b) M. For each comparison, the Tukey’s HSD
test provides an estimation of the differences between mean pairs and their respective confidence intervals, as well the p-value for each comparison. All
comparisons whose confidence intervals do not contain zero value have a p-value lower than 0.05 and, therefore, are statistically different with a 95%

confidence level. (See Table I to see the description of levels.)
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(a) DS refers to the number of time-spectral
visual words present in the visual codebook.
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(b) CP denotes the coding and pooling
strategies used to build the mid-level
descriptors.
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for generating the visual code-
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Fig. 8. Confidence interval of the differences between the means of the levels of the factors (a) DS, (b) CP, (c) CS and (d) SDD. All comparisons whose
confidence intervals do not contain zero value have a p-value lower than 0.05 and, therefore, are statistically different with a 95% confidence level as it is
the case for the comparisons indicated on the (a) x axis and (b-d) y axis. (See Table I for the description of levels.)

coding processes causes statistically significant impacts on the

response variable, and softmax is the recommended choice.

In addition, Fig. 8(c) shows that the method used to se-

lect the words that compose the visual codebook (random

vs. clustering-based selection) also presents results that are

statistically significant with k-means being the recommend

choice due to the high performance achieved by models built

with visual codebooks generated using k-means, during this

experiment. Finally, Fig. 8(d) shows that the visual codebook

creation strategy (single visual codebook vs. class-based code-

books) does not present statistical difference and, therefore,

should also be considered in a future optimization process

during the implementation of the method in a real application.

3) Classification Step Parameter Analysis (C): The SVM

classifier outperformed PLS classifier with a statistically sig-

nificant difference (p-value = 0.00). We believe that this

happened because of the non-linearity of the data as we use a

non-linear version of SVM the a linear version of PLS.

4) Analysis of Interaction Effects and Choice of the Best

Configuration: After analyzing each factor in isolation, we ex-

amine whether there is significant interaction between factors.

In this case, if a small p-value is obtained in the interaction

effect analysis between two factors, then we can conclude that

these factors do not operate independently of each other [61].

Otherwise, there is no evidence of an interaction effect.

First of all, we can see that there is a relationship between

the region from which the low-level time-spectral features are

extracted (factor LGF) and the spectral information used in

the generation of time-spectral descriptors (factor M). When

analyzing the magnitude spectrum of the Fourier transform, we

see that there is a concentration of low frequency components

in the abscissa and ordinate axes. Fig. 9 shows that this

interaction between factors LGF and M exists. In addition: (i)

we have an increase in the mean of AUC values for measures

MH , PH , PE and PMI , when these measures are calculated

in the center region of the frames; (ii) we have a decrease in
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the mean of AUC for measure PC; and (iii) we have very

small changes in mean values of AUC for MC and MMI

when we compare the two strategies for feature extraction.
60

65
70

75
80

85
90

95

LGF Factor

M
ea

n 
of

 A
UC

 (%
)

●

●

●
●

●

●

C W

●

●

●

M Factor

MC
PC
ME
PMI
MMI
PH
PE
MH

(a) LGF and M interaction.
Note that we have a slump in
the mean of AUC when setting
LGF to W and decrease the
number of low-level features.

73
74

75
76

77
78

CS Factor

M
ea

n 
of

 A
UC

 (%
)

K R

CP Factor

softmax
hardmax
hardsum

(b) CS and CP interaction. We
have a significant increase in
the mean of AUC with the
hard-assignment when we use
k-means to select the visual
words of the codebooks.

Fig. 9. Interaction plots between pairs of factors (a) LGF×M and (b) CS×CP.
The factor LGF denotes the region in the frame considered for extracting the
low-level features, while factor M denotes the statistical measures considered
for describing the information of the temporal cubes. Finally, the factor CS
denotes the mode of selection of the visual words from visual codebooks and
the factor CP refers to the strategies used in the coding and pooling process.
(See Table I to see the description of levels.)

Finally, the form of selecting the visual words (factor CS)

and the method of coding and pooling used in the construction

of the dictionaries (factor CP) also presents an interesting

interaction. Both factors significantly influence the results, but

not in isolation. Fig. 9(b) shows that the results obtained with

hardmax, hardsum and softmax are worse when the visual

words are chosen randomly instead of through clustering.

E. Summary After Analyzing Different Factors and Levels

The proposed method presents better results using time-

spectral features extracted from magnitude spectrum videos

considering the whole frames of a video and using the corre-

lation measure from time-spectral features for generating the

time-spectral descriptors.

The class-based codebooks outperform the single codebook

and the selection strategy of the visual words that best fits

to the spoofing detection problem is the k-means clustering.

The most appropriate size for codebooks is 320 visual words

and the softmax outperformed the other coding and pooling

strategies. With this configuration, we obtained an AUC of

99.46% and an HTER of 2.75%, considering the test set of

the Replay-Attack dataset [28]. Next, we show experiments

and results for this method using this final configuration.

F. Results

This section compares the proposed method with others in

the literature for the Replay-Attack [28], CASIA [30] and

3DMAD [35] datasets. In all experiments, we used the best

configuration of the proposed method as discussed in the

last section. The parameters that did not present statistical

significance (DS and SDD), were fine-tuned for each dataset.
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Fig. 10. Results obtained on Replay-Attack dataset for each type of attack
using fixed-support (a) in contrast with hand-based attacks (b).

1) Replay-Attack Dataset: We first consider the validation

Protocol I (c.f., Sec. IV-B) and the Replay-Attack dataset.

Table II shows the results for the three types of attacks

available in this set. Fig. 10(a) shows that attacks performed

with high-quality samples are more difficult to detect (HTER

of 5.94%). This result was expected as high-quality fake

samples usually contain less artifacts revealing an attack.

In turn, video-based and photo-based attacks were easily

detected (HTER of 0.63%). Note that video-based spoofing

attacks are more susceptible to blurring effects, whereas the

photo-based attacks show a large amount of flickering effects

due to printing defects. Fig. 10(b) shows results obtained

considering fixed-support and hand-based attacks, separately.

We believe that hand-based attacks are easier to be detected

given that small movements of the impostor user during the

attack generate more artifacts in the biometric sample causing

more disturbances in the frequency components.

TABLE II
PERFORMANCE RESULTS FOR THE REPLAY-ATTACK DATASET.

Dataset FAR FRR HTER AUC

High-definition attack 10.63 1.25 5.94 98.77

Mobile attack 0.00 1.25 0.63 99.95

Print attack 0.00 1.25 0.63 99.86

Hand-based attack 1.00 1.25 1.13 99.87

Fixed-support attack 7.50 1.25 4.38 99.03

Overall test set 4.25 1.25 2.75 99.46

2) CASIA Face Anti-Spoofing Dataset: In this experiment,

we evaluate the proposed method using the Protocol II (c.f.,

Sec. IV-B) and CASIA dataset.

Table III shows the results obtained for the seven scenarios

of attacks available in this dataset. Fig. 11(a) shows that

video-based and warp-photo spoofing attacks are easier to be

detected by the proposed method (HTER of ≈ 8%). On the

other hand, the cut-based spoofing attacks are more difficult to

be detected (HTER of 22.22%). One possible reason for cut-

based attacks to be more difficult for detecting is that during

an attempted attack based on cut-photos, the photographs are

practically in the same position during all the time, generating

fewer artifacts along time, whereas for the attempted attacks

based on warped-photos, the photographs are bent during the

attack to simulate facial motion. In addition, we believe that

video-based attacks were easier to be detected because of

the inevitable downsize of the high-resolution samples by the
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Fig. 11. Results obtained on CASIA dataset for the three type of attacks (a)
and for the three quality of attack (b).

screen device used during attack, as also reported by CASIA’s

authors [30]. In this case, many evidences of attempted attacks

are generated and added to the fake sample.

As for the quality of the acquisition (Fig. 11(b)), the

proposed method showed better results for attacks carried

out with low-quality videos. An interesting result is the best

performance of the method to deal with high-resolution videos

than normal quality videos. We believe that any conclusion

would be precipitous because many factors can influence the

noise level of a sensor such as sensor imperfections (e.g.,

appearance of hot pixels, dead pixels, as well as pixel traps

under different acquisition conditions). Several works in the

literature have explored these issues. For instance, thermal

action has a considerable impact over pattern noise of a digital

camera and appearance of defective pixels [62]–[64]. As we

do not assure that the captures/recaptures happened under

similar acquisition conditions, it is wiser only to point out

the existence of classification differences in this case.

TABLE III
PERFORMANCE RESULTS FOR THE CASIA DATASET.

Dataset FAR FRR HTER AUC

Low quality 10.00 10.00 10.00 98.11

Normal quality 17.78 20.00 18.89 87.67

High quality 13.33 13.33 13.33 95.04

Warp photo attack 7.78 8.89 8.33 96.05

Cut photo attack 22.22 22.22 22.22 87.27

Video attack 8.89 8.89 8.89 96.41

Overall Attack 14.07 14.44 14.26 93.25

3) 3DMAD Dataset: We now turn our attention to evaluate

the proposed method for mask-based spoofing attack detection

using the Protocol IV (c.f., Sec. IV-B). Using the official

dataset protocol, the proposed method obtained an AUC of

96.16% and an HTER of 8.0%.

Erdogmus et al. [18] reported an HTER of 0.95% using

block-based LBP features (local features) and the Linear

Discriminant Analysis (LDA) classifier. This performance

difference is somewhat explained due to the different val-

idation protocol used. Erdogmus et al. used an 1000-fold

cross validation method and, in each fold, the clients from

the dataset were randomly assigned into training, development

and test sets. In our case, we randomly divided the clients

from dataset and assigned them into training, development and

test set only once. Even so, the proposed method outperforms

other techniques using global LBP, whose HTERs reported by

Erdogmus et al. were all above 10.0%.

4) UVAD Dataset: In this experiment, we evaluate the

proposed method using the Protocol III (c.f., Sec. IV-B) and

UVAD dataset. We also evaluate the proposed method consid-

ering LBP-based and motion-based countermeasure methods.

According to Pereira et al. [40], the correlation method

presents an HTER of 11.79% on Replay-Attack. In turn,

LBPu2
8,1 [28] was effective to characterize the artifacts embed-

ded in the attack videos on Replay-Attack obtaining an HTER

of 15.16%. In the UVAD dataset, however, both methods

obtained a more modest performance as Table IV shows. With

respect to LBPu2
8,1 method, for instance, the proposed method

reduces the classification error in about 36%.

TABLE IV
COMPARISON AMONG LBP-BASED APPROACH [28], MOTION-BASED

APPROACH [31] AND THE PROPOSED METHOD ON THE UVAD DATASET.

Methods FAR (%) FRR (%) HTER (%)

Correlation [31] 81.60 14.56 48.06

LBPu2
8,1 [28] 27.41 66.04 46.72

Proposed Method 44.73 15.00 29.87

5) Comparison with State-of-the-Art Methods for CASIA

and Replay-Attack Datasets: In this section, we compare the

proposed method with others available in the literature for

Replay-Attack and CASIA datasets. Table V shows results for

the Replay-Attack Dataset. The proposed method outperforms

the ones based on texture analysis [8], [28], [41] and also

methods based on motion analysis [31]. It was also more

effective than methods based on fusion schemes reported by

Pereira et al. [40] and Komulainen et al. [65], with a relative

error reduction (RER) of 67.69% and 46.18%, respectively.

TABLE V
COMPARISON AMONG THE EXISTING METHODS. THE FIRST COLUMN

SHOWS THE HTERS REPORTED BY THE AUTHORS, WHEREAS THE SECOND

COLUMN SHOWS THE RELATIVE ERROR REDUCTION (RER) OBTAINED

WITH THE PROPOSED METHOD. THE REPORTED HTERS WERE OBTAINED

USING THE ORIGINAL REPLAY-ATTACK DATASET [28] PROTOCOL. THE

RESULTS HIGHLIGHTED WITH † AND ‡ WERE REPORTED BY CHINGOVSKA

ET AL. [28] AND PEREIRA ET AL. [40], RESPECTIVELY.

Methods HTER (%) RER (%)

Chingovska et al. [28] 15.16 81.86

Pinto et al. [58] 14.27 80.73

Määttä et al. [8] 13.87† 80.17

Anjos and Marcel [31] 11.79‡ 76.68

Pereira et al. [40] 8.51 67.69

Pereira et al. [41] 7.60 63.82

Komulainen et al. [65] 5.11 46.18

Proposed Method 2.75 0

Table VI shows a comparison among the proposed method

and others reported in the literature for CASIA dataset. The

proposed method is on par with the best ones in the literature.

6) Analysis of the Minimum Detection Time: We now ana-

lyze the impact of the video length over the method discrim-

inability for CASIA, Replay-Attack and 3DMAD datasets.

This experiment evaluates: the minimum number of frames
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TABLE VI
COMPARISON AMONG THE PROPOSED METHOD AND OTHERS AVAILABLE

IN THE LITERATURE. ACCORDING TO THE AUTHORS OF THE PROPOSED

METHODS, EERS REPORTED WERE OBTAINED USING THE ORIGINAL

CASIA DATASET [30] PROTOCOL.

Methods EER (%)

DoG Baseline. [30] 17.0

LBPu2
8,1. [41] 16.0

LBP-TOPu2
8,8,8,1,1,1. [41] 10.0

Proposed Method 14.0

required for the method to operate; and the method stability,

in terms of HTER(%), for the three different datasets.

Fig. 12 indicates that HTER values vary only slightly when

we change the video length for the three datasets and that

the proposed method uses about two seconds to detect an

attempted attack, thus not compromising the transparency of

the authentication process.
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Fig. 12. Results in terms of HTER (%) of the proposed method for different
video input length for Replay-Attack, CASIA and 3DMAD datasets.

7) Cross-Dataset Evaluation: In this section, we dis-

cuss the performance of the proposed method considering a

more difficult scenario (cross-dataset), in which the proposed

method is trained with one dataset but it is tested on a different

dataset with different acquisition conditions. In this exper-

iment, all datasets used during the training were randomly

divided into training and development sets in a proportion of

80% and 20%, respectively. The development set is used to

estimate the EER threshold that is necessary to calculate the

HTER during the test.

Table VII shows the results using the cross-dataset protocol.

The results indicate that the proposed method presents better

generalization when trained with CASIA, with a mean HTER

of 40.17%. We believe this occurred due to more variability

of the type of attacks and video quality in the CASIA dataset,

which enriches the training. This dataset contains warped-,

cut- and video-based attacks performed with spoofed samples

of different quality: low, normal and high quality. Such char-

acteristics enables a better generalization of the method when

CASIA is used for training.

In turn, the best performance when testing the CASIA and

3DMAD datasets was obtained when training with UVAD

dataset, another rich dataset for training. Although this dataset

contains only video-based spoofing attacks, it has comprises

different sensors (for capturing and recapturing the biomet-

ric samples) and display devices used during the attempted

attacks. We believe that such variability adds different sensor-

intrinsic noise levels to the training samples, which contribute

to build a more robust classification model.

With regard to the more modest generalization presented

during the test of the 3DMAD dataset, we believe that it

is due to the absence of some artifacts that are commonly

found in samples from photo-based and video-based attacks

(e.g., blurring, flickering effects) that were not found in the

attempted attack video from 3D masks. In addition, spoofing

attacks performed with masks are less likely to add temporal

disturbances similar to those added when the impostor presents

the fake samples, by hand, using a monitor or a photo.

Finally, Table VIII shows a comparison among the obtained

results reported in the literature. Except for the correlation

method, all others present a better performance when they

are trained with CASIA. Once again, we believe that our

method performs better when training with CASIA because

such dataset is more heterogeneous than Replay-Attack. The

Correlation [31] and LBP-TOP [28] methods aim to charac-

terize temporal information, similarly to the proposed method,

and the results of both methods emphasize the difficulty in

characterizing such information completely. In this protocol,

besides handling data from different sensors, all methods have

to deal with different lighting conditions and background.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an algorithm for detecting spoof-

ing attacks that takes advantage of noise and artifacts added to

the synthetic biometric samples during their manufacture and

recapture. We showed that the analysis of the behavior of the

noise signature, in the frequency domain, is proper to reveal

spoofing attacks. For this, we proposed the use of time-spectral

features as low-level descriptors, which gather temporal and

spectral information in a single feature descriptor. To handle

several types of attacks and to obtain a feature descriptor

with a suitable generalization, we also proposed the use of

the visual codebook concept to find a mid-level representation

from time-spectral descriptors.

The experimental results showed that the magnitude is an

important characteristic from a signal, in frequency domain,

for spoofing attack detection. We also showed how to use the

visual codebook concept effectively in order to find a more

robust space representation to the different kinds of attacks and

with a good generalization. The obtained results demonstrated

the effectiveness of the proposed method in detecting different

types of attacks (photo-, video-, and 3D-mask-based ones).

We believe that the frequency-based approach used is effec-

tive because we have a decrease in low frequency components

due to information loss caused during manufacture of the fake

samples (e.g., information loss during printing) and recapture

(e.g., blurring effect) and an increase in some high frequency

components in the fake samples during recapture due to some

artifacts added to the fake samples (e.g., printing artifacts,

banding effect, noise added by the imaging sensor). Moreover,

these disturbances in the composition of the components of

frequencies are best characterized as we analyze the biometric

sample in the frequency domain rather than spatial domain

and along time instead of on isolated frames or still images.
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TABLE VII
RESULTS OBTAINED WITH THE CROSS-DATASET PROTOCOL AND USING THE OVERALL TEST SETS OF EACH DATASET.

Train Test FAR (%) FRR (%) HTER (%) Mean HTER (%)

3DMAD 88.00 4.00 46.00

Replay-Attack 32.50 36.25 34.38CASIA

UVAD 38.61 41.67 40.14

40.17%

3DMAD 52.00 44.00 48.00

CASIA 0.00 100.0 50.00Replay-Attack

UVAD 5.74 83.33 44.54

47.45%

3DMAD 84.00 4.00 44.00

CASIA 13.70 63.33 38.52UVAD

Replay-Attack 79.25 6.25 42.75

41.76%

TABLE VIII
COMPARISON AMONG DIFFERENT ANTI-SPOOFING METHODS

CONSIDERING CROSS-DATASET PROTOCOL.

Methods Train Test HTER (%)

Proposed Method
Replay-Attack CASIA 50.00

CASIA Replay-Attack 34.38

Replay-Attack CASIA 48.28
Correlation

CASIA Replay-Attack 50.25

LBP-TOPu2
8,8,8,1,1,1

Replay-Attack CASIA 61.33

CASIA Replay-Attack 50.64

Replay-Attack CASIA 57.90
LBPu2

8,1 CASIA Replay-Attack 47.05

Regarding the important cross-dataset validation, the per-

formed experiments demonstrated that the proposed method

and other approaches available in the literature still have

modest generalizations. This is of particular importance for the

research community as it shows that the problem is still far

from solved and cross-dataset validation must be considered

from now on when designing and deploying spoofing detection

techniques.

As discussed earlier, we observed that different biometric

sensors present different properties. Therefore, it is important

to train a classifier considering this variability. UVAD dataset

comes in hand for this purpose and will surely serve the

community in this regard with more than 15k samples of

hundreds of clients and diverse sensors.

Finally, it is worth mentioning that we do not claim to

introduce the best method out there for spoofing detection.

On the contrary, our very objective in this paper was to

show that capturing spatio, spectral and temporal features

from biometric samples can be successfully considered in the

spoofing detection scenario. That being said, it is likely that the

proposed approach, when combined with existing ones in the

literature, may as well boost the performance since they will

likely rely on complementary features for solving the problem.

Directions for future research include the investigation

of new approaches to transforming low-level descriptors

into mid-level descriptors as Fisher vectors [66] and Bossa

Nova [45]. These strategies for finding mid-level representa-

tions could also be exploited by methods that use texture-

based descriptors. In such cases, the goal would be to inves-

tigate whether the representation space found by the texture

descriptors used in the literature for detecting face spoofing

attacks (e.g., LBP, LBP-TOP, and their variants) could be

transformed in a new representation space better adapted to

the face spoofing problem in a scenario with different types

of attacks.
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