
SPOTTING THE DIFFERENCE: CONTEXT RETRIEVAL AND ANALYSIS FOR IMPROVED
FORGERY DETECTION AND LOCALIZATION

Joel Brogan1, Paolo Bestagini2, Aparna Bharati1, Allan Pinto1,3, Daniel Moreira1

Kevin Bowyer1, Patrick Flynn1, Anderson Rocha1,3, and Walter Scheirer1

1Department of Computer Science and Engineering, University of Notre Dame, US
2Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy

3Institute of Computing, University of Campinas, Brazil

ABSTRACT

As image tampering becomes ever more sophisticated and common-
place, the need for image forensics algorithms that can accurately
and quickly detect forgeries grows. In this paper, we revisit the ideas
of image querying and retrieval to provide clues to better localize
forgeries. We propose a method to perform large-scale image foren-
sics on the order of one million images using the help of an im-
age search algorithm and database to gather contextual clues as to
where tampering may have taken place. In this vein, we introduce
five new strongly invariant image comparison methods and test their
effectiveness under heavy noise, rotation, and color space changes.
Lastly, we show the effectiveness of these methods compared to pas-
sive image forensics using Nimble [1], a new, state-of-the-art dataset
from the National Institute of Standards and Technology (NIST).

Index Terms— image forensics, forgery detection, splicing de-
tection, context-aware digital forensics, tampering heat maps

1. INTRODUCTION

Now that advanced photo editing software is readily available, image
tampering has become ubiquitous, and the traces left behind by such
modifications are becoming increasingly hard to detect. Regardless
of intention, this trend has undermined the value of images as viable
evidence in a number of domains. To examine cases of tampering, a
two-fold task can be pursued. First, tampering within an image must
be detected without the use of pre-embedded information (e.g., a
key). This is known as Passive Digital Image Forensics (PDIF) [2].
Second, the tampered area must be accurately localized if it is to be
considered for further analysis.

In this paper, we improve upon the image comparisons for
contextual-clue-based PDIF offered in Gaborini et al. [3]. In a
PDIF scenario, a contextual clue can be interpreted as the incon-
gruities between the image in question and images collected from
outside sources. While [3] presents a basic method for contextual-
clue-based image forensics, our work proposes a fully-automatic,
efficient, and scalable search-and-compare framework for image
forensics. Additionally, our work offers highly noise-invariant com-
parison algorithms. This framework treats the image under question

This material is based on research sponsored by DARPA and Air Force

Research Laboratory (AFRL) under agreement number FA8750-16-2-0173.

Hardware support was generously provided by the NVIDIA Corporation. We

also thank the financial support of FAPESP (Grant #2015/19222-9), CAPES

(DeepEyes Grant) and CNPq (Grant #304472/2015-8).

Fig. 1. An overview of the context-based search-and-compare
framework. Probe image P is used as input to a database search
in step i), which returns a list of results R, shown in step ii). The
transforms between P and R are found in step iii). The top-related
image C is chosen in step iv). In step v), C is compared to P using
one of five proposed algorithms from Section 4, yielding a tampering
heat map (THM) used to extract the alien region of P.

as a search probe and does not rely on having well-posed and pre-
gathered images, as in [3]. Accordingly, the system described in
this paper provides improved performance over traditional PDIF
methods, and automatic extraction of alien regions within composite
images. These properties make the system potentially useful for
subsequent tasks like image provenance analysis, i.e., the study of
how and when an image has been modified over time. The pro-
posed system utilizes a fast, light-weight search engine based on
KD-Trees [4] optimized for SURF descriptors [5] to retrieve a set of
near-duplicate images related to the probe. These images are then

compared to the probe to produce contextual clues as to the location
of modifications. An overview of the entire framework is shown in
Figure 1.

Three main modifications are typically performed on images:
splicing, copy-move, and re-sampling. As a case study, this paper
considers only instances of image splicing, also known as image
compositing. In general, splicing includes an original Host Image,
onto which regions from one or more Donor Images are added to
create a Composite Image. Regions from a donor image present
on a host image are known as Alien Regions. Most classic PDIF ap-
proaches exploit the nature of the digital photographic process to find
evidence of these alien regions by using the data contained within the
image in question. In contrast, our method uses outside information
(i.e., context) gathered from a search engine to collect such evidence.

Within our search-and-compare framework, we analyze the per-
formance of five novel signal-processing-based image comparison
techniques for extracting Tampering Heat Maps (THMs) that in-
dicate regions of the image where tampering might have occurred.
We intentionally chose to avoid deep learning-based techniques be-
cause we found that sufficient training data that fully captures the
variations seen in manipulated images is not readily available, nor
is it clear how a comprehensive training dataset could be assem-
bled. Additionally, the computational resources required for deep
learning techniques are prohibitive to the massively scalable and ef-
ficient system needed to accomplish the proposed task. Using the
five signal-processing based comparison techniques, we test the pro-
posed image-search-and-compare algorithms on the Nimble dataset,
a dataset newly developed by NIST for the task of image prove-
nance [1], mixed in with a set of 1 million distractor images. Finally,
we compare the results of our image search method to a set of 13
state-of-the-art PDIF splicing algorithms to show the effectiveness
of the proposed method.

2. RELATED WORK

Forgery detection and localization based on single image analysis
can be performed using a variety of traditional PDIF methods [6, 7].
For example, one set of techniques exploit JPEG artifacts [8–14].
Another set of approaches utilize Color Filter Array (CFA) foot-
prints [15,16]. Yet another set of methods deal with detecting natural
noise inconsistencies within spliced images [17–19]. Additionally,
methods based on Error Level Analysis (ELA) [20] can be used.

More recently, image provenance research has shown the pos-
sibility of conducting even deeper forensic analysis by jointly con-
sidering sets of correlated images [21–23]. Indeed, if multiple im-
ages are available, it is possible to achieve robust forgery localization
results through image comparison [24]. For instance, using scaled
thumbnail meta-data of images to localize forgeries [25] can provide
high-accuracy localization maps of image tampering. When thumb-
nail data is unavailable, near-duplicate images have also been used
to build THMs from contextual clues as to where forgeries occur [3].
While these ideas show promise, they provide no automatic method
of retrieving contextually relevant images for comparison. Addition-
ally, the comparison methods found in the literature offer relatively
poor invariance to color changes, noise, morphing, and compression
between images.

By always considering a scenario with multiple images, sophis-
ticated methods for patch comparison using deep learning have been
proposed [26, 27]. However, the corresponding models were trained
for highly specific keypoint matching scenarios. Techniques like
these do not capture the variations present in realistic forgeries, and
thus cannot be used as-is in a real-world forensic scenario.

3. IMAGE SEARCH ALGORITHM

The first step of the search-and-compare process is image search, as
shown in Fig. 1. The search engine must adhere to multiple con-
straints. First, the system must provide fast and scalable indexing
and searching. For the proposed search-and-compare method to be
effective, we must have an extremely large database (on the order of
one million images in this work) to compare against.

In our proposed search method, we extract 500 SURF keypoints
[5] with the relative 64-dimensional descriptors to describe each im-
age. We utilize a KD-tree forest scheme similar to what was used
in [4] to scalably index and search the descriptors in the database.
This method provides a higher likelihood of returning images that
contain objects directly comparable to the probe [28]. According
to the described scheme, once a probe image P is queried, the sys-
tem returns a set of N contextually similar images along with any
possible near-duplicate images Rn, n ∈ [1, N].

4. IMAGE COMPARISON FRAMEWORK

Once the images Rn, n ∈ [1, N] are retrieved from the image
database using probe image P as a query, they must be sorted and
filtered to ensure only truly relevant images to our probe are com-
pared. To accomplish this goal, for each image Rn, SURF keypoints
and features are re-calculated. Then, the 3×3 affine matrix Fi map-
ping points of Rn to the coordinate system of P is computed using
keypoint matching and the MSAC method, allowing for tighter geo-
metric constraints than RANSAC [29]. To generate a list of images
with content that best geometrically matches the probe, we rank
each Rn by the Reciprocal Frobenius Condition of its linked affine
transform Fn as

RFNn =
1

‖Fn‖‖F−1
n ‖ , (1)

where ‖ · ‖ is the Frobenius norm of a matrix.
We assert that the greater the RFN value, the more suitable Rn

will be to the comparison task. Therefore, even though multiple im-
ages could be used to provide multiple clues, we decided in this work
to only select as comparison image C the image Rn with the highest
RFN Value warped using the affinity matrix Fn

C = warp(Rn̂, Fn̂), n̂ = argmax
n

(RFNn), (2)

where warp applies the affine transform to the image. Once this
image has been selected, we must compare the probe image P to the
result image C to produce a THM as shown in Fig. 1. To achieve
a reliable comparison, an algorithm must overcome differences in
image noise, colorspace changes, and slight rotations and translation.
For this purpose, we propose the following five algorithms.

1. PSNR of Gaussian Image Residual. (IRPSNR) We define
G(I, σG) to be the convolution of image I with a Gaussian kernel
with standard deviation σG . We set σG = 4, as we found it to provide
optimal local blurring to allow for invariance to small translations
and rotations. To generate a tampering heat map, we compute the
pixel-wise Peak Signal to Noise Ratio (PSNR) between the Gaussian
blurred versions of P and C as

THMPSNR = log10
1

|G(P, σG)− G(C, σG)|2 + 1
, (3)

where all operations are pixel-wise, and the plus 1 in the denomina-
tor is used for regularization. Portions of P matching the respective
portions of C will contribute to the THMPSNR with high values. Tam-
pered areas should be exposed by low THMPSNR values.

2. Pseudo-PRNU Patch-wise Comparison. Images shot with
the same camera are characterized by a multiplicative noise pattern
known as Photo-Response Non-Uniformity (PRNU) [30]. This noise
residual is characteristic of the capturing device, and can be used
for camera attribution [30], for tampering localization [31], or even
to assess whether two images come from the same device [32]. As
near-duplicate images are acquired by the same camera by definition,
we can rely on image noise patch-wise comparison to detect local
inconsistencies due to splicing.

Given two corresponding patches of P and C (e.g., the first
64 × 64 pixel block in the top-left corner of each image), PRNU
information extracted from those patches should correlate very well
if only global transformations (e.g., color corrections, blurring, com-
pression, etc.) have been applied to P or C. Conversely, PRNU in-
formation does not correlate at all if one of the two patches has been
spliced from a picture obtained from a different device.

To exploit this property, let us define the noise residuals

C̃ = C −W(C), R̃ = R−W(R), (4)

where W(·) is the wavelet-based denoising operation used in [30].

According to [30], the computed C̃ and R̃ contain PRNU traces.
Therefore, it is possible to correlate them patch-wise for the THM

THMnoise = average

(
C̃ · R̃

||C̃|| · ||R̃||

)
, (5)

where ‘·’ represents pixel-wise multiplication, ||·|| returns the Frobe-
nius norm, and average(·) computes the moving average on 64× 64
pixel blocks. The mask THMnoise should present high values corre-
sponding to areas that are common to P and C, and low values in
tampered regions.

3. Structural Similarity Comparison. (SSIM) This method
uses the calculated pixel-wise Structural Similarity Index Measure
(SSIM) between images P and C. [33] We define the structural
similarity-based THM as

A = (2μPμC + (0.01D)2)(2σPC + (0.03D)2), (6)

B = (μ2
P + μ2

C + (0.01D)2)(σ2
P + σ2

C + (0.03D)2), (7)

THMSSIM =
A

B
, (8)

where μ and σ are the local neighborhood means and standard devi-
ations of P and C with a neighborhood radius of 32 pixels, σPC is
the local covariance of the local image patches, and D is the dynamic
contrast of the images. Similar to the PRNU-based mask, THMSSIM

should assume low values in correspondence of tampered areas.
4. HSV Histogram Patch-wise Comparison. From images P

and C, local histogram patches HPxy and HCxy are calculated using
a local neighborhood radius of 13 pixels. We use the probability of
the two-sample Kolmogorov-Smirnov Test [34] being equal to or
more extreme than the observed value of the null hypothesis that
CDFHP = CDFHC , where CDFH is the Cumulative Distribution
Function of a given histogram patch. This value is calculated for
each corresponding patch to generate a THM:

Prxy(max
a

(|Q(a,HCxy)−Q(a,HPxy)|) | HPxy), (9)

THMHPC = Pr, (10)

where Q(a,�b) is the proportion of �b less than or equal to a. This
allows us to test, in a manner invariant to small rotations, the idea
that each patch contains a similar distribution.

Fig. 2. Five variants of the proposed context-based search-and-
compare framework compared against 13 widely-used PDIF tech-
niques. The gray area represents the maximum and minimum per-
formance of each PDIF algorithm. Even the worst performing con-
textual method, PRNU matching, performs 44% better than the top
PDIF comparison algorithm. For the best performing variants, we
see that IRPSNR performs 1.5% better than PatchMatch 2.1.

5. PatchMatch 2.1. For an additional method, we use the Patch-
Match algorithm [35] for image comparison. Specifically, we utilize
the rotation and scale-invariant version, using 20 iterations. To gen-
erate the relative THMPM, we calculate the L2 match distance of
patches within the image. In other words, we associate to each 8× 8
patch of P the L2 distance from the patch of C that best approx-
imates it. If a patch of P cannot be well approximated with any
patch of C (i.e., in case of tampering), its L2 distance will be high.

5. EXPERIMENTS AND RESULTS

Dataset. For the purpose of our experiments, we utilize a new, state-
of-the-art dataset from NIST called Nimble [1]. The dataset contains
a subset specifically for splicing operations, dubbed Nimble-Splice,
which contains a total of 288 probe images, each having been hand-
composited from a gallery of 874 images. A host, donor, and binary
tamper mask image are provided with each probe. The masks repre-
sent ground-truth data to compare our generated THMs against.

To simulate a real-world scale, we take the 874 gallery images
from Nimble-Splice and add one million distractor images provided
by RankOne Inc. Medifor program 1. This allows us to test the
effectiveness of indexing and subsequently finding relevant images
for comparison. We call this hybrid dataset “Nimble World” (NW).

Framework Setup. Using the method described in Section 3,
we extract features and index all 1,000,874 images into a KD-tree
forest. For each probe we return the top I = 100 results from the
KD-forest search. We find that our search algorithm returns relevant
results with Recall at Rank 25 = 99.5%. The top scoring image is
registered to the probe using the affine transform described in Sec-
tion 4. We test all five proposed algorithms to compare the probe
and result and generate a THM. Using a sliding threshold to localize
forgeries (i.e., image differences), we generate ROCs for pixel-wise
classification of our THMs compared to ground-truth masks. 2

1http://medifor.rankone.io/
2Code for these experiments available at https://gitlab.com/

notredame-provenance/Context_Comparison

0 0.2 0.4 0.6 0.8 1
FAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

A
R

 Contextual Method Performance Under HSV Perturbation

Histogram Patches AUC=0.51692
PRNU Noise AUC=0.86373
PatchMatch 2.1 AUC=0.44091
IRPSNR AUC=0.74549
Structural Similarity AUC=0.93108

Fig. 3. Performance of all five contextual image forensics methods
under random HSV space transformations. The SSIM approach is
most invariant to color changes, while most other algorithms suffer.
Patchmatch 2.1 performs poorly in such scenarios.

0 0.2 0.4 0.6 0.8 1
FAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
A

R

 Contextual Method Performance Under Poisson Noise Perturbation

Histogram Patches AUC=0.61846
PRNU Noise AUC=0.84869
PatchMatch 2.1 AUC=0.83308
IRPSNR AUC=0.93631
Structural Similarity AUC=0.8746

Fig. 4. Performance of all five contextual image forensics methods
under the addition of Poisson Noise. The IRPSNR approach is most
invariant to noise.

Experiment 1. The first experiment studies the performance of
the methods we propose in this paper and 13 current state-of-the-art
PDIF splicing-detection algorithms. These algorithms include JPEG
artifact analysis [8–14], CFA analysis [15, 16], image noise analy-
sis [17–19], and ELA [20]. The THMs generated by these methods
were compared to the ground-truth masks using the same thresh-
olding method to generate ROC curves. In Fig. 2 we see a large
performance gap between our five proposed algorithms within the
search-and-compare framework, which perform the best, and the set
of 13 PDIF methods from the literature.

Experiment 2. The second experiment analyzes the perfor-
mance of each of the five proposed image-to-image comparison al-
gorithms in the presence of non-negligible noise, color, and rotation
perturbations. These perturbations, performed on the result images
R that are used in individual comparisons, simulate real-world arti-
facts likely to be found in images indexed from the web.

To perturb the color space of gallery images in the NW dataset,
we randomly fluctuated the HSV channels of each image indepen-
dently between 0 and 20%. The results for color space perturb-
ing can be seen in Fig. 3. Similarly, to perturb the noise within

0 0.2 0.4 0.6 0.8 1
FAR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
A

R

 Contextual Method Performance Under Rotation Perturbation

Histogram Patches AUC=0.93342
PRNU Noise AUC=0.90544
PatchMatch 2.1 AUC=0.83635
IRPSNR AUC=0.95118
Structural Similarity AUC=0.94373

Fig. 5. Performance of all five contextual image forensics meth-
ods under random small-angle image rotations. The PatchMatch ap-
proach is most negatively impacted; other algorithms perform well.

gallery images, random amounts of Poisson noise were added to
each gallery image. Results for noise can be seen in Fig. 4. Lastly,
we used random rotations between −15◦ and 15◦ after the result
registration phase, to simulate an incorrect registration caused by er-
roneous keypoint matches. Results for rotation can be seen in Fig. 5.

We concluded that a test on scale-based perturbations was not
necessary after observing that algorithm performance was nearly
identical even for large-scale fluctuations.

6. CONCLUSION

Assuming a search process that provides relevant results in the pres-
ence of a large number of distractor images, a context-based search-
and-compare framework for image forensics is greatly superior at lo-
calizing areas of tampering than traditional PDIF methods. Further,
we conclude that of the methods tested, the IRPSNR method pro-
vided the most invariance to rotation and noise space perturbations,
while the SSIM method had the least performance deterioration un-
der color space perturbation. The PRNU patch-wise comparison al-
gorithm was the most stable over all three perturbation cases, while
Histogram patch-wise comparison and PatchMatch had the least in-
variance to all perturbation methods.

It should be noted that while the search-and-compare paradigm
provides improved results over traditional PDIF methods, search-
and-compare fails in cases where original or near-duplicate images
are not present. However, these instances can be detected simply by
testing the maximum Reciprocal Condition of each probe-to-result
transform, and thresholding at an empirically determined level.

With respect to further directions for this work, the search-and-
compare paradigm introduced in this paper lends itself nicely to the
task of image provenance analysis and multimedia phylogeny [22,
23]. To construct accurate provenance graphs that express relation-
ships between tampered images, we must dig down into the localized
tampered objects within a composite to further determine each ob-
ject’s origin. The THMs produced by our framework can be easily
segmented into tamper regions. These regions can then be directly
analyzed to determine the nature of the tampering. Thus, the work
we have described in this paper should not be treated as a standalone
contribution, but placed in the wider context of digital forensics.

7. REFERENCES

[1] National Inst. of Standards and Technology, “The 2016 Nimble chal-
lenge evaluation dataset,” https://www.nist.gov/itl/iad/
mig/nimble-challenge, Jan. 2016.

[2] A. Rocha, W. J. Scheirer, T. E. Boult, and S. Goldenstein, “Vision of
the unseen: Current trends and challenges in digital image and video
forensics,” ACM Computing Surveys (CSUR), vol. 43, October 2011.

[3] L. Gaborini, P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro,
“Multi-clue image tampering localization,” in 2014 IEEE International
Workshop on Information Forensics and Security (WIFS), 2014, pp.
125–130.

[4] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image de-
scriptor matching,” in IEEE Conf. on Computer Vision and Pattern
Recogn., 2008, pp. 1–8.

[5] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European Conference on Computer Vision, 2006, pp. 404–
417.

[6] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “Image forgery lo-
calization through the fusion of camera-based, feature-based and pixel-
based techniques,” IEEE International Conference on Image Process-
ing (ICIP), 2014.

[7] M. Zampoglou, S. Papadopoulos, and Y. Kompatsiaris, “Large-scale
evaluation of splicing localization algorithms for web images,” Mult.
Tools and Applications, pp. 1–34, 2016.

[8] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-
grained tampered JPEG image detection via DCT coefficient analysis,”
Pattern Recognition, vol. 42, no. 11, pp. 2492–2501, 2009.

[9] T. Bianchi, A. De Rosa, and A. Piva, “Improved DCT coefficient
analysis for forgery localization in JPEG images,” in 2011 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011, pp. 2444–2447.

[10] I. Amerini, R. Becarelli, R. Caldelli, and A. Del Mastio, “Splicing
forgeries localization through the use of first digit features,” in 2014
IEEE International Workshop on Information Forensics and Security
(WIFS), 2014, pp. 143–148.

[11] W. Li, Y. Yuan, and N. Yu, “Passive detection of doctored JPEG image
via block artifact grid extraction,” Signal Processing, vol. 89, no. 9, pp.
1821–1829, 2009.

[12] S. Ye, Q. Sun, and E.-C. Chang, “Detecting digital image forgeries by
measuring inconsistencies of blocking artifact,” in IEEE Int. Conf. on
Multimedia and Expo, 2007, pp. 12–15.

[13] T. Bianchi and A. Piva, “Image forgery localization via block-grained
analysis of JPEG artifacts,” IEEE Trans. on Information Forensics and
Security, vol. 7, no. 3, pp. 1003–1017, 2012.

[14] H. Farid, “Exposing digital forgeries from JPEG ghosts,” IEEE Trans.
on Information Forensics and Security, vol. 4, no. 1, pp. 154–160, 2009.

[15] P. Ferrara, T. Bianchi, A. De Rosa, and A. Piva, “Image forgery lo-
calization via fine-grained analysis of CFA artifacts,” IEEE Trans. on
Information Forensics and Security, vol. 7, no. 5, pp. 1566–1577, 2012.

[16] A. E. Dirik and N. D. Memon, “Image tamper detection based on de-
mosaicing artifacts,” in ICIP, 2009, pp. 1497–1500.

[17] B. Mahdian and S. Saic, “Using noise inconsistencies for blind image
forensics,” Image and Vision Computing, vol. 27, no. 10, pp. 1497–
1503, 2009.

[18] S. Lyu, X. Pan, and X. Zhang, “Exposing region splicing forgeries
with blind local noise estimation,” International Journal of Computer
Vision, vol. 110, no. 2, pp. 202–221, 2014.

[19] J. Wagner, “Noise analysis for image forensics,” https://29a.ch/
2015/08/21/noise-/analysis-for-image-forensics,
Aug. 2015.

[20] N. Krawetz, “A picture’s worth... digital image analysis and forensics,”
Black Hat Briefings, pp. 1–31, 2007.

[21] A. De Rosa, F. Uccheddu, A. Costanzo, A. Piva, and M. Barni, “Ex-
ploring image dependencies: a new challenge in image forensics,” in
IS&T/SPIE Electronic Imaging, 2010, pp. 75410X–75410X.

[22] Z. Dias, A. Rocha, and S. Goldenstein, “First steps toward image phy-
logeny,” in 2010 IEEE International Workshop on Information Foren-
sics and Security (WIFS),, 2010, pp. 1–6.

[23] Z. Dias, A. Rocha, and S. Goldenstein, “Image phylogeny by minimal
spanning trees,” IEEE Trans. on Information Forensics and Security,
vol. 7, no. 2, pp. 774–788, 2012.

[24] P. Bestagini, M. Tagliasacchi, and S. Tubaro, “Image phylogeny tree
reconstruction based on region selection,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2016.

[25] M. Kirchner, P. Winkler, and H. Farid, “Impeding forgers at photo in-
ception,” in IS&T/SPIE Electronic Imaging, 2013, pp. 866504–866504.

[26] S. Zagoruyko and N. Komodakis, “Learning to compare image patches
via convolutional neural networks,” in IEEE Conf. on Computer Vision
and Pattern Recog., 2015, pp. 4353–4361.

[27] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “Matchnet:
Unifying feature and metric learning for patch-based matching,” in
IEEE Conf. on Computer Vision and Pattern Recog., 2015, pp. 3279–
3286.

[28] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for
content-based image retrieval,” in ESANN, 2011.

[29] S. Choi, T. Kim, and W. Yu, “Performance evaluation of ransac family,”
Journal of Computer Vision, vol. 24, no. 3, pp. 271–300, 1997.

[30] J. Lukáš, J. Fridrich, and M. Goljan, “Digital Camera Identification
from Sensor Noise,” IEEE Transactions on Information Security and
Forensics (TIFS), vol. 1, pp. 205–214, 2006.

[31] M. Chen, J. Fridrich, M. Goljan, and J. Lukáš, “Determining image
origin and integrity using sensor noise,” IEEE Transactions on Infor-
mation Forensics and Security (TIFS), vol. 3, pp. 74–90, 2008.

[32] M. Goljan, M. Chen, and J. Fridrich, “Identifying common source
digital camera from image pairs,” in IEEE International Conference on
Image Processing (ICIP), 2006.

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[34] H. W. Lilliefors, “On the kolmogorov-smirnov test for normality with
mean and variance unknown,” Journal of the American statistical As-
sociation, vol. 62, no. 318, pp. 399–402, 1967.

[35] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, “Patch-
match: A randomized correspondence algorithm for structural image
editing,” ACM Transactions on Graphics-TOG, vol. 28, no. 3, pp. 24,
2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

