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Abstract—Prior art has shown it is possible to estimate,
through image processing and computer vision techniques, the
types and parameters of transformations that have been applied
to the content of individual images to obtain new images. Given a
large corpus of images and a query image, an interesting further
step is to retrieve the set of original images whose content is
present in the query image, as well as the detailed sequences
of transformations that yield the query image given the original
images. This is a problem that recently has received the name
of image provenance analysis. In these times of public media
manipulation (e.g., fake news and meme sharing), obtaining the
history of image transformations is relevant for fact checking
and authorship verification, among many other applications.
This article presents an end-to-end processing pipeline for image
provenance analysis, which works at real-world scale. It employs
a cutting-edge image filtering solution that is custom-tailored for
the problem at hand, as well as novel techniques for obtaining the
provenance graph that expresses how the images, as nodes, are
ancestrally connected. A comprehensive set of experiments for
each stage of the pipeline is provided, comparing the proposed
solution with state-of-the-art results, employing previously pub-
lished datasets. In addition, this work introduces a new dataset
of real-world provenance cases from the social media site Reddit,
along with baseline results.

Index Terms—Digital Image Forensics, Digital Humanities,
Image Retrieval, Graphs, Image Provenance, Image Phylogeny

I. INTRODUCTION

Algorithms for the detection of manipulated content in dig-

ital images have reached a stage of maturity that is sufficient

for understanding the transformations that were applied to

individual images in many cases [1]–[3]. A logical next step is

to develop an approach that allows us to ask more complicated

questions about the relationships between related images after

sequences of transformations have been applied — a problem

that is not well studied in the image processing literature. In

this article, we consider the Provenance Analysis task [4], [5],

in which the objective is to recover the graph of relationships

between plausibly connected images. These relationships may

be expressed as undirected edges (i.e., neighboring transfor-

mations are identified) or directed edges (i.e., the order of

neighboring transformations is expressed). The development

of techniques to recover such graphs combines ideas from the

areas of image retrieval, digital image forensics, and graph

D. Moreira, A. Bharati, J. Brogan, M. Parowski, K. Bowyer, P. Flynn, and
W. Scheirer are with the Department of Computer Science and Engineering,
University of Notre Dame, IN, USA. A. Pinto and A. Rocha are with the
Institute of Computing, University of Campinas, SP, Brazil.

This paper has supplementary material available at
http://ieeexplore.ieee.org, provided by the authors. The material
includes an explanatory video. Corresponding author: W. J. Scheirer
(walter.scheirer@nd.edu).

query

A
: 

P
ro

v
e
n
a
n

c
e
 I
m

a
g
e
 F

il
te

ri
n
g

B
: 

P
ro

v
e
n
a
n

c
e
 G

ra
p
h
 C

o
n

s
tr

u
c
ti

o
n

filter

rank

query

database

host

1. 2. 3. 4. 5.

6. 7. 8. 9. 10.

Fig. 1. Image Provenance Analysis workflow. Panel A depicts the first step
of Image Provenance Analysis, namely Provenance Image Filtering, in which
filters are applied to a large image database to retrieve those images that
are related to a given query image. Panel B depicts the second step, namely
Provenance Graph Construction, in which the filtered images are linked to
each other in a way that expresses the sequences of manipulation and/or
compositions (i.e., the provenance history of the images).

theory, making this an interesting interdisciplinary endeavour

within image processing and computer vision.

To illustrate the provenance analysis task, consider the

set of example images in Panel A of Fig. 1, which were

collected from the popular “Photoshop battles” forum on the

social media site Reddit [6]. On this forum, amateur artists

begin with source images and employ image manipulation

tools to generate results for humorous effect. The first step

in provenance analysis is Provenance Image Filtering, which

consists of searching a potentially large pool of images for

those that are most closely related to a given query image.

Related images might be semantically similar (i.e., the same

scene may be present from slightly different view points or at

nearby points in time), or they might be near duplicates related

by minor transformations such as exposure and saturation
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adjustments, or cropping and re-sizing, or they might be image

compositions, which contain elements of two or more different

source images. In most cases, the query will be an image that

has been manipulated in some way.

The second step is Provenance Graph Construction, where

the objective is to understand the relationships between images

yielded by provenance image filtering. A Host Image provides

the source of background content for subsequent manipula-

tions. In Fig. 1, the host is the photo of the man holding

a shovel in the leftmost part of Panel B. A Donor Image

provides some amount of content that will be inserted into

a host image. In Fig. 1, three donor images are the original

images of the sharks and the paddle board in the bottom half

of Panel B. They provide image content that has been inserted

into the image they are linked to. Sequences of manipulations

are common, and they can be expressed as a directed graph

representing the order in which they were applied. This can be

seen in the graph of Panel B, where the depth of the central

path containing the host and the query leads to three different

levels of manipulations. Our goal is to develop an algorithm

that can generate such graphs in an automated fashion. We

do not make strong assumptions that either the original host

or donor images are available during analysis. For instance,

the paddle board, flying carpet, and extra people might not

necessarily be harvested at the image filtering step.

Provenance analysis is important to image processing and

computer vision. It has direct applications in a number of

different fields. The most immediate application is forensics,

where the detection of manipulated images spans traditional

policing to analysis for strategic intelligence. The question

of the origins of suspect images has taken a prominent role

recently, with the rise of so-called “fake news” on the Internet.

While not a new problem1, concern about fake news reached

new heights on the heels of the 2016 American presidential

election. The rapid evolution of the online social media

landscape has provided new, free media channels with which

even amateur bloggers and news outlets can reach massive

audiences with little effort, and even less regulation. Recent

instances of fake news often involve questionable images

propagating through social media. For example, in early 2017,

the New York Times reported on the creation of a false

story about the discovery of pre-marked ballots in Ohio that

appeared a couple of months before the election [8]. The image

accompanying the story was the product of a mirrored image

that was selectively blacked-out in local regions [9]. This is a

real-life case with multiple manipulations where provenance

analysis could be applied to trace the origins of the fabrication.

Beyond the important application domain of forensics,

image provenance analysis can form a powerful framework

for academic research in other fields. Cultural analytics has

emerged as a distinct sub-discipline within the digital human-

ities [10], [11] that is concerned with combining quantitative

methods from social science and computer science to answer

humanistic questions about cultural trends. An example of this

(which we have already touched upon in Fig. 1) is the study of

1The computer hacker group Cult of the Dead Cow warned of the
devastating potential of widespread online media manipulation as early as
1999 [7].

Internet memes — cultural artifacts meant to be widely trans-

mitted and evolve over time. Memes are an interesting object

of cultural study, in that they encapsulate facets of popular

entertainment, political moods, and novel elements of humor.

Meme aggregators like the website knowyourmeme.com have

done a good job at archiving such content, but a more

exhaustive quantitative study of the provenance of individual

memes has yet to emerge. Tracing the source(s) of modified

meme images helps us unpack the underlying cultural trends

that can tell us something meaningful about the community

that generated the content.

Both of the application domains mentioned also motivate the

need for any developed techniques to be scalable. Specialized

algorithmic components are necessary to solve the problem at

hand. First, one needs an accurate and scalable image retrieval

algorithm that is able to operate over very large collections of

images (realistically, on the order of millions of images) to find

related candidates. Such an algorithm also has to address the

particularities of the provenance image filtering task: it must

perform well at retrieving the near-duplicate host images that

are highly related to the query (a well-known problem in the

image retrieval literature), but also perform well at retrieving

donors (images that potentially donated small portions to the

query) and the donors’ respective near duplicates (which might

not be directly related to the query). Second, the identification

of likely image transformations that explain how each retrieved

image might have been used to generate the others is required,

as it is used to create the ordering of the images in the

provenance graph. And third, methods from graph theory

are necessary to organize the relationships between images,

yielding a directed graph that is human-interpretable. All

of these components must be integrated as a coherent and

scalable processing pipeline.

In this context, this work introduces, for the first time, a fully

automated large-scale end-to-end pipeline that starts with the

step of provenance image filtering (over millions of images)

and ends up with the provenance graphs.

II. RELATED WORK

Content-based image retrieval (CBIR). In recent years,

research advances in the domain of CBIR have included opti-

mizing the memory footprint of indexing techniques and em-

ploying graphical processing units (GPU) for parallel search. A

recent technique proposed by Johnson et al. [12] utilizes state-

of-the-art image indexing (Optimized Product Quantization

(OPQ) [13]) and runtime optimization to perform similarity

search on the order of a billion images. Such approaches

can be directly applied to perform image filtering for prove-

nance analysis. However, as they follow the traditional CBIR

inverted-file index pipeline [14], they will not generalize to all

cases due to the nature of the problem. While regular CBIR

will probably retrieve good host candidates to the query, in the

face of compositions (which are fairly common in provenance

analysis), small donors will not be highly ranked (or will not

even be retrieved) without adaptations to the base approach.

The work of Pinto et al. [15] improves the retrieval of

donors related to a query in the scope of provenance analysis.
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The paper introduces a two-tiered search approach. The first

tier constitutes a typical CBIR pipeline, while the second

tier provides a context-aware query-masking technique, which

selects the regions from the query that make it divergent from

hosts previously obtained in the first tier. With such regions

as evidence, a second search is performed, this time avoiding

hosts and retrieving additional potential donor images. Al-

though such an approach does improve the retrieval of donors,

it adopts a very “query-centric” point of view with respect to

the problem of provenance analysis. It only finds the hosts and

donors that directly share content with the query, ignoring the

other descendants and the ancestors of such hosts and donors,

which are transitively related to the query.

Image processing for image associations. In our proposed

workflow, the filtering step yields relevant images, and then

provenance graph construction is performed. The provenance

graph construction step involves finding diverse types of

associations among images based on their similarities and/or

dissimilarities. For that reason, it is related to tasks such

as visual object recognition [16], scene recognition [17],

place recognition [18], object tracking [19], near-duplicate

detection [20], and image phylogeny [4], since they all rely

on the comparison of two or more images.

Some visual association tasks may be general, as they relate

images based on the common characteristics that optimally

make them related. This is the case, for instance, for object

recognition. For example, a query image that implicitly re-

quests “retrieve all the images containing dogs” may also be

assumed to be generalized (any breed, color, or size). Scene

recognition (e.g., “retrieve all the images depicting bedrooms”)

may also include generalized queries. In such situations, a

high content diversity among the related images is usually

desired [21]. By contrast, some image association tasks may

be specialized, in the sense that they aim at extracting the

specific characteristics that aid in the visual identification of

a sample in a particular setting. That is the case of place

recognition (e.g., retrieve all the images of Times Square), and

object tracking (e.g., segment the target vehicle plate across

the frames of a street surveillance video).

Techniques for associating images in a general way include

comparing global image representations [22], [23], employing

bags of visual features [24], [25] and using convolutional

neural networks (CNNs) [26]–[29]. Techniques for associ-

ating images in a specialized way include assessing local

feature matching [30]–[34], image patch matching [35], and

evaluating the quality of image registration, color matching,

and mutual information [36], [37]. Particularly, provenance

analysis is by definition closer to the specialized tasks; for

that reason, in this work, we benefit more from techniques

mentioned in the latter group.

Although one can adapt deep CNNs to provenance analysis

by optimizing them for specialization rather than generaliza-

tion at training time [38], [39], such a procedure is — at the

present time — only accomplishable at the expense of pro-

hibitive training times, the need for a reasonably large cluster

of GPUs for model screening via hyperparameter optimization,

and a sufficiently large amount of available training data [40].

In addition, making such a solution perform at scale at infer-

ence time is also challenging. Zagoruyko and Komodakis [38]

report that their CNN approach performs feature extraction

on high-end GPUs twice as slow as SIFT [41] running on a

regular CPU. In this work, we have intentionally chosen to

pursue faster alternatives.

Image phylogeny trees. Provenance analysis is related to

the simpler task of image phylogeny, which seeks to recover

a tree of relationships. Kennedy and Chang [42] were the first

to point out the possibility of relying on the color information

of pixels and local features for gathering clues about plausible

parent-child relationships among images. Based upon the pixel

colors and local features, they suggest detecting a closed set

of directed manipulations between pairs of content-related

images (namely copy, scaling, color change, cropping, content

insertion, and overlay detection).

Rather than exhaustively modeling all of the possible ma-

nipulations between near-duplicate images, Dias et al. [43]

suggest having a good dissimilarity function that can be

used for building a pairwise image dissimilarity matrix D.

Accordingly, they introduce oriented Kruskal, an algorithm

that processes D to output an image phylogeny tree, a data

structure that expresses the probable evolution of the near

duplicates at hand. In subsequent work, Dias et al. [4] formally

present the dissimilarity-calculation protocol that is widely

used in the related literature for computing D. They then go on

to conduct a large set of experiments with this methodology,

considering a family of six possible transformations, namely

scaling, cropping, affine warping, brightness, contrast, and

lossy content compression [44]. Finally, in [5], Dias et al.

replace oriented Kruskal with other phylogeny tree building

methods: best Prim, oriented Prim, and Edmonds’ optimum

branching [45], with the last solution consistently yielding

improved results.

Image phylogeny forests. The image phylogeny solutions

mentioned up to this point were conceived to handle near

duplicates; they do not work in the presence of semantically

similar images. Aware of such limitations, Dias et al. [46]

extend the oriented Kruskal solution to automatic oriented

Kruskal, an algorithm that finds a family of disjoint phylogeny

trees (a phylogeny forest) from a given set of near duplicates

and semantically similar images, such that each tree describes

the relationships of a particular group of near duplicates.

Analogously, Costa et al. [47] provide two extensions to

the optimum branching algorithm, namely automatic optimum

branching and extended automatic optimum branching, both

based on automatically calculated cut-off points. Alternatively,

Oikawa et al. [48] propose the use of clustering techniques for

finding the various phylogeny trees; the idea is to group images

coming from the same source, while placing semantically

similar images in different clusters. Finally, Costa et al. [36]

improve the creation of the dissimilarity matrices, regardless

of the graph algorithm used for constructing the trees.

Multiple parenting phylogeny trees. Although previous phy-

logeny work established preliminary analysis strategies and

algorithms to understand the evolution of images, the key

scenario of image composition, in which objects from one

image are spliced into another, was not addressed. Compo-

sitions were first addressed within the phylogeny context by
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Oliveira et al. [49]. The solution presented by these authors

assumes two parents (one host and one donor) per composite.

Extended automatic optimum branching is thus applied for

the construction of ideally three phylogeny trees: one for the

near duplicates of the host, one for the near duplicates of the

donor, and one for the near duplicates of the composite. Even

though this work is very relevant to ours herein, it has a couple

of limitations. First, it does not consider the possibility of

more than two images donating content towards one composite

image (such as the composite with sharks in Panel B of Fig. 1).

Second, Oliveira et al. require all images to be in JPEG format.

Provenance graphs. To date, the entire image phylogeny

literature has made use of metrics that focus on finding the

root of the tree, rather than evaluating the phylogeny tree as a

whole, considering every image transformation path in the case

of provenance. Aware of such limitations and aiming to foster

more research on the topic, the American National Institute

of Standards and Technology (NIST) has recently introduced

new terminology, metrics, and datasets, coining the term image

provenance to express a broader notion of image phylogeny,

and suggesting directed acyclic provenance graphs, instead

of trees, as the data structure that describes the provenance

of images [50]. They also suggest the use of a query as the

starting point for provenance analysis.

Following this, Bharati et al. [37] introduced a more gener-

alized method of provenance graph construction, which does

not assume anything about the images and transformations. A

content-based method for the construction of undirected prove-

nance graphs is proposed, which relies upon the extraction and

geometrically-consistent matching of interest points. Utilizing

this information to build the dissimilarity matrix, the method

uses Kruskal’s algorithm to obtain the provenance graph. The

approach performs well over small cases, even in the presence

of distractors (i.e., images that are not related to the query).

Extending the field of provenance analysis, this paper pro-

vides the following contributions:

1) Distributed interest point selection: a novel interest point

selection strategy that aims at spatially diversifying the

image regions used for indexing within the provenance

image filtering task.

2) Iterative filtering: a novel querying strategy that itera-

tively retrieves images that are directly or transitively

related to the query, considering all possible hosts,

donors, composites, and their respective near duplicates.

3) Clustered provenance graph construction: a novel graph

construction algorithm that clusters images according

to their content (joining near duplicates into the same

clusters), prior to establishing their intra- and inter-

cluster directed relationship maps.

4) State-of-the-art results on the provenance analysis

benchmark released by NIST [51].

5) A new dataset of real-world scenarios containing com-

posite images from Photoshop battles held on the Reddit

website [6]. Experiments performed over this dataset

highlight the real-world applicability of the approach.

III. PROVENANCE ANALYSIS METHODOLOGY

As described in Sec. I, the task of image provenance

analysis is divided into two major steps, namely Provenance

Image Filtering and Provenance Graph Construction. Fig. 2

depicts an overview of the proposed solution in this context.

A. Provenance Image Filtering

The problem of image filtering for the provenance task is

different from the typical image retrieval task: a given query

image may fulfill one or both of the following conditions:

• The query may have a relationship to various near

duplicates. The near duplicates may be hosts of the query

(in the case of the query being a composite that inherits

the background from a near duplicate) or the query itself

may be a host, as in the case of the query donating a

background to the near duplicates.

• The query may be a composite with a relationship to one

or more donors, whose content may be entirely disjoint.

Donors can even be composites themselves, with their

own hosts and donors.

In such scenarios, the retrieval method must return as many

of the directly and transitively related images as possible.

These aspects define a unique image retrieval and filtering

problem, known as Provenance Image Filtering [15], [50],

which is different from more typical near-duplicate or seman-

tically similar image retrieval. In this work, we assume that a

ground-up system must be deployed for search, retrieval, and

filtering, instead of relying on currently available resources

such as Google [52] or TinEye [53].

1) Distributed Interest Point Selection: Due to the nature

of the manipulations seen in tampered images, it is important

to build a filtering system that is tolerant to a wide range

of image transformations. Hence, we adopt a low-level image

representation that is based on interest points and local fea-

tures, since they are reportedly tolerant to transformations such

as scaling, rotation, and contrast adjustment [54]. Nevertheless,

while regular interest points are mostly designed to identify

corners and blobs on the image, we also want to describe

and further index homogeneous areas with low response and

consequently a sparse amount of detected interest points, for

retrieving images with the same type of content. Although one

can use a dense sampling approach to extract interest points

within those regions, this is computationally prohibitive in the

context of searching millions of images [15].

Therefore, we introduce a new method called distributed

interest point selection that aims at keeping a sparse approach

while being able to provide interest points inside low-response

areas. For that, we extend Hessian-based detectors (such as

Speeded-Up Robust Features (SURF) [54]) in the following

way. Instead of employing a threshold t to collect interest

points whose local Hessian values are greater than t, we define

a parameter p that expresses the fixed amount of interest

points we want to extract from each target image. Within

these p interest points, m < p interest points are extracted for

the reason of being the top-m regions with the m strongest

Hessian values. The remaining n = p − m are extracted
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(a) (b)

Fig. 3. Effects of using the approach of distributed interest point selection.
In (a), the result of a regular SURF interest point detection. In (b), the result
of the distributed approach over the same image, with many more points over
homogeneous regions, such as the skin of the wrist.

from the set containing the post-top-m interest points, which

is also sorted according to the Hessian response. Starting

from the (m + 1)-th strongest interest point, we only add

the current interest point if it does not overlap with another

already selected interest point; otherwise, we try to add the

next strongest interest point, up to the point of obtaining n
interest points.

Fig. 3 depicts the effect of using the distributed approach

along with SURF. Fig. 3 (a) depicts a regular SURF detection,

while Fig. 3 (b) depicts the distributed version, over the same

image. Fig. 3 (b) presents more points over the skin of the

wrist and background (which are more homogeneous regions)

than Fig. 3 (a).

2) Database Indexing: The next step is to build the image

index structure. After interest point detection and feature

extraction, we are left with p description vectors per image.

For an image collection C:

Ci ∈ C, s.t. i ∈ Iimg = {0, 1, . . . , |C|}, (1)

our subsequent feature collection F is:

Fi ∈ F, s.t. i ∈ Iind = {0, 1, . . . , |C| × p}, (2)

where Iimg denotes the numbered index set of full images

within C, and Iind indicates the subsequent numbered index

set assigned to individual features in F . We transform F to a

new space using Optimized Product Quantization (OPQ) [13]

to make the feature space well-posed for coarse Product

Quantization (PQ). We refer to this new rotated feature set

as Fr. From a random sample of Fr, a coarse set of repre-

sentative centroids O is generated using PQ. A subsequent

Inverted File System with Asymmetric Distance Computation

(IVFADC) [55]) is generated from O, allowing for fast and

efficient search.

3) Image Search: Once the database images are indexed, a

search procedure can be performed via feature-wise queries.

For a query image Q, a set of p distributed SURF features

Fd is extracted, rotated according to Fr, and submitted to

the system. Each image Q leads to a matrix of indices of

Approximate Nearest Neighbors (ANN) R of size |Fd| × K,

where K is the parameter of the K-nearest neighbors for the

system to return. Each Rij value of R is computed using

Asymmetric Distance Computation (ADC) [55]:

Rij = S(Fdi
)j , s.t. i ∈ {1, ..., |Fd|} and j ∈ {1, ...,K} (3)

where S signifies a feature-wise query search on the IVFADC

filtering system, i denotes the i-th query feature of Q, and

j denotes the j-th ANN index of the j-th nearest feature

belonging to Fr. As a consequence, each row of R corresponds

to a feature in Fd, containing the K-nearest neighbor features,

which we may consider as matched features. We then map R
from the Iind space to the Iimg space. The set of unique

related image indices is computed as:

Rimg = M(R, Iind, Iimg). (4)

where function M(R, I1, I2) maps index values in R from

the Iind domain to the Iimg index domain, allowing each Rij

to represent the image it belongs to. Once Rimg is obtained, a

result set of images sorted by the number of matched features

is calculated for giving the final global query results of Q.

The score for each image indexed within Rimg is therefore

denoted by freq(x,Rimg), where x ∈ {Rimg} and freq(x, ·)
is a function that counts the number of occurrences of x.
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4) Iterative Filtering: Once a first rank of images is re-

trieved through the search algorithm, we iteratively refine the

results to add images that are not directly related to the query,

but are still related in some way to its provenance.

In contrast to the approach described by Pinto et al. [15],

which employs a two-tiered search to retrieve the small donors

of the query after masking the regions that diverge between the

query and the first images of the retrieved rank, in this work we

employ the reciprocal condition matching measure (RCMM)

proposed in [56] to identify and suppress the near duplicates

of the query. Given that a large RCMM value between two ar-

bitrary images indicates that they are probably near duplicates,

we suppress the retrieved images whose RCMM values with

the query are large. The non-suppressed (and therefore non-

near-duplicate) images of the current rank are then provided

as new queries to the next search iteration, which is performed

using the same method explained in Sec. III-A3.

By applying the above process for a number of iterations,

we search various sets of non-near-duplicate queries (which

are potentially donors) and end up with a set of ranks, which

are then flattened and re-ranked using RCMM. In the end, we

obtain a less query-centric rank of images, which contains not

only images directly related to the query, but also transitively

related (e.g., ancestors of the donors of the query). As will be

demonstrated in Sec. V, such a strategy improves the recall of

the provenance image filtering task.

B. Provenance Graph Construction

As one can observe in Fig. 2, the provenance graph con-

struction task builds upon the image rank that is obtained

by the provenance image filtering task, and ends up with the

provenance graph. Therefore, at this point, we can assume that

(in the best scenario) all images directly and transitively related

to the query are available for constructing the provenance

graph, as well as some distractors (images that should not be

present in the provenance graph, because they are not related

to any of the images within it).

The presence of distractors at this step is more of a matter

of design. Taking into consideration that, in [37], experiments

show distractors not impacting the provenance graph construc-

tion too much, and aiming to keep the provenance image

filtering part as simple as possible, we give the subsequent

dissimilarity matrix calculation task the duty of removing

distractors. Therefore, the input is a set containing the k
top-retrieved images and the query, which are then used for

building dissimilarity matrices.

1) Calculation of Dissimilarity Matrices: Similar to [4],

given the set I containing the k top-retrieved images and the

query, a dissimilarity matrix D is a (k + 1)× (k + 1) matrix

whose elements dij describe the dissimilarity between images

Ii and Ij , respectively the i-th and j-th images of I . Depend-

ing on how the values dij are calculated, D can be either

symmetric or asymmetric.

In this work, following the solution proposed in [37], we

neither make any strong assumptions with respect to the

transformations that might have been used to generate the

elements of I , nor impose limitations on the presence of

near duplicates, semantically similar images, or multi-donor

composites. Instead, we focus on analyzing the shared visual

content between every pair of images (Ii, Ij) through two

ways of calculating dij . In the first one, we set dij as the

inverse of the number of geometrically-consistent interest-

point matches (GCM) between images Ii and Ij ; in this

particular case, the matrix D is symmetric. In the second one,

we set dij as the mutual information (MI) between a color

transformation Tj(Ii) of image Ii towards image Ij ; in this

case, the matrix D is asymmetric. Both methods are described

below.

GCM-based dissimilarity: Provenance graph construction

starts with the detection of interest points over each one of

the k + 1 images that belong to I . At this step, different

interest point detectors can be applied, such as SURF [54] or

Maximally Stable Extremal Regions (MSER) [57], with each

one yielding a particular dissimilarity matrix. Once the interest

points are available and properly described through feature

vectors (e.g., SURF features [54]), we find correspondences

among them for every pair of images (Ii, Ij). Let Pi be the

set of feature vectors obtained from the interest points of

image Ii, and Pj be the set of features obtained from Ij . For

each feature belonging to Pi, the two best matching features

are found inside Pj using Euclidean distance (the closer the

features, the better the match). Inspired by Nearest-Neighbor-

Distance-Ratio (NNDR) matching quality [41], we ignore all

the features whose ratio of the distances to the first and to

the second best matching features is smaller than a threshold

t, since they might present a poor distinctive quality. The

remaining features are then kept and finally matched to their

closest pair.

Even with the use of NNDR, it is not uncommon to gather

geometrically inconsistent matches, i.e., contradictory interest-

point matches that, if together, cannot represent plausible con-

tent transformations of image Ii towards image Ij , and vice-

versa. To get rid of these matches, we adopt a solution that

is able to build a geometrically-consistent model of expected

interest-point positions from any pair of matches between

images Ii and Ij . For example, consider two arbitrary matches

m1 and m2, which respectively connect points p1 ∈ Ii and

q1 ∈ Ij , and points p2 ∈ Ii and q2 ∈ Ij . Based upon the

positions, the distance lp, and the angle αp between points p1
and p2 (both from image Ii), as well as upon the positions,

the distance lq , and angle αq between points q1 and q2 (both

from image Ij), we estimate the scale, translation, and rotation

matrices that make p1 and p2 respectively coincide with q1
and q2. With these matrices, we transform every matched

interest point of Ii onto the space of Ij . As one might expect,

points that do not coincide with their respective peers after the

transformations have their matches removed from the set of

geometrically consistent matches.

Finally, we compute the dissimilarity matrix D by setting

every one of its dij elements as the inverse of the number

of found geometrically-consistent matches between images Ii
and Ij . In this case, the dissimilarity matrix is symmetric.

MI-based dissimilarity: The mutual-information (MI)-based

dissimilarity matrix is an extension of the GCM-based alter-
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native (see Fig. 2). After finding the geometrically consistent

interest-point matches for each pair of images (Ii, Ij), the ob-

tained interest points are used for estimating the homography

Hij that guides the registration of image Ii onto image Ij ,

as well as the homography Hji that analogously guides the

registration of image Ij onto image Ii.
In the particular case of Hij , for calculating dij , after

obtaining the transformation Tj(Ii) of image Ii towards Ij ,

Tj(Ii) and Ij are properly registered, with Tj(Ii) presenting

the same size of Ij , and the matched interest points relying on

the same position. We thus compute the bounding boxes that

enclose all the matched interest points, within each image,

obtaining two correspondent patches R1, within Tj(Ii), and

R2, within Ij . As in [37], the distribution of the pixel values

of R1 is matched to the distribution of R2, prior to calculating

the pixel-wise amount of residual between them with MI.

From the point of view of information theory, MI is the

amount of information that one random variable contains about

another. From the point of view of probability theory, it mea-

sures the statistical dependence of two random variables. In

practical terms, assuming each random variable as respectively

the aligned and color-corrected patches R1 and R2, the value

of MI is given by the entropy of discrete random variables:

MI(R1, R2) =

∑

x∈R1

∑

y∈R2

p(x, y) log

(

p(x, y)
∑

x p(x, y)
∑

y p(x, y)

)

,
(5)

where x ∈ [0, .., 255] refers to the pixel values of R1, and

y ∈ [0, .., 255] refers to the pixel values of R2. The p(x, y)
value regards the joint probability distribution function of R1

and R2. As explained in [36], it can be approximated by:

p(x, y) =
h(x, y)

∑

x,y h(x, y)
, (6)

where h(x, y) is the joint histogram that counts the number

of occurrences for each possible value of the pair (x, y),
evaluated on the corresponding pixels for both patches R1

and R2. As a consequence, MI is directly proportional to the

similarity of the two patches.

Back to Hji, it is calculated in an analogous way of

Hij . However, instead of Tj(Ii), Ti(Ij) is manipulated for

transforming Ij towards Ii. Further, the size of the registered

images, the format of the matched patches, and the matched

color distributions are different, leading to a different value of

MI for setting dji. As a consequence, the resulting dissimilar-

ity matrix D is asymmetric, since dji 6= dji.

Avoiding distractors: As we have mentioned before, the

image rank given to the provenance graph construction step

may contain distractors, which need to be removed during

the dissimilarity matrix calculation step. When computing the

dissimilarity matrix D, the solution proposed by Bharati et

al. [37] establishes matches between every pair of available

images, including distractors. By interpreting D as the adja-

cency matrix of a multi-graph whose nodes are the images,

they identify distractors as the nodes weakly connected (i.e.,

that present a small number of matches, down to none) to

the minimum spanning tree that contains the query. Assuming

(k+1) as the number of image nodes, they perform (k2+k)/2
operations to populate D.

In this work, we improve that process by the means of an

iterative approach, which starts from the node of the query and

then computes the geometrically consistent matches with the

remaining k images. A set with only the strongly connected

nodes is thus saved for the next iteration. In the following

iterations, the algorithm keeps trying to establish matches

starting from the last set of strongly matched images, up to

the point where no more strong matches are found.

Although simple, this solution may provide a significant

improvement in the runtime of the dimissimilarity matrix

calculation. Let d ≤ k be the amount of distractors inside

the image rank. We avoid (d2 − d)/2 operations by applying

the iterative solution. In the case of a rank with 50 images

(k = 50), for instance, and 40 distractors (d = 40) (indicating

that the provenance graph contains only ten images), the num-

ber of operations is reduced from 1, 275 to 795, significantly

speeding up the runtime in case of small graphs.

2) Clustered Provenance Graph Construction: Once the

GCM- and MI-based dissimilarity matrices are available, we

rely on both for constructing the final provenance graph, by

the means of a novel algorithm, named clustered provenance

graph expansion. This algorithm, differently from Kruskal’s

algorithm, delivers directed provenance graphs rather than

undirected minimum spanning trees.

The main idea behind such solution is to group the available

images in a way that only near duplicates of a common image

are added to the same cluster. Starting from the image query

Iq , the remaining images are sorted according to the number

of geometrically consistent matches shared with Iq , from the

largest to the smallest. The solution then clusters probable near

duplicates around Iq , as long as they share enough content,

which is decided based upon the number of matches. After

automatically adding the first image of the sorted set to the

cluster of Iq , the solution iteratively analyzes the remaining

available images. For deciding if the i-th candidate image Ii
(where i > 1) is a near duplicate, the algorithm keeps track

of the number of matches mi between Ii and the last image

Ii−1 added to the cluster. Let µi−1 be the average number of

matches of the cluster, and σi−1 be the standard deviation. Ii
is connected to Ii−1 in the final provenance graph, if m1 ∈
[µi−1 - σi−1;µi−1 + σi−1]; in such a case, Ii is added to the

cluster by affinity, and novel values of µi and σi are calculated,

for evaluating the next candidate Ii+1. Otherwise, the current

cluster is considered finished up to Ii−1.

As a consequence, the obtained clusters have their images

sequentially connected into a single path, without branches.

That makes sense in scenarios involving sequential image edits

where one near duplicate is obtained on top of the other, as

in [51]. To determine the direction of a single edge, we rely on

the mutual information. Let D be the MI-based dissimilarity

matrix, and consider two images Ii and Ij , whose respective D
elements are dij and dji. As explained in [49], an observation

of dij > dji means that Ii probably generated Ij .

Finally, whenever a cluster is finished and there are still
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disconnected available images, we find the image already

added to the provenance graph whose number of matches with

the remaining ones is largest. This image is then assumed as

the new query I ′q , over which the aforementioned clustering

algorithm is executed, considering only the yet disconnected

images. As a result, the final provenance graph sees a branch

rising from I ′q as an orthogonal path containing new images.

IV. EXPERIMENTAL SETUP

Here we describe the experimental setup, including the

datasets (Sec. IV-A), metrics (Sec. IV-B), large-scale infras-

tructure (Sec. IV-C), and the parametric values employed for

image filtering (Sec. IV-D) and graph construction (Sec. IV-E).

A. Datasets

1) NIST Dataset: As a part of the Nimble Challenge

2017 [51], NIST released a dataset specifically curated for

the tasks of provenance image filtering and graph construc-

tion. The dataset is divided into development and evaluation

partitions, of which, at the current time, only the development

partition contains fully released ground-truth. For that reason,

we rely on that development partition, named NC2017-Dev1-

Beta4, to evaluate the performance of the proposed solution.

Nonetheless, the reader may be interested in learning about

our performance on the official challenge. In the released

results [58], the herein proposed solution is labeled as ND-

PURDUE and yields the best official results reported to date.

NC2017-Dev1-Beta4 contains 65 queries and 11,040 images

that comprise samples related to the queries and distractors.

As a consequence, the dataset makes available a complete

groundtruth that is composed of the 65 expected image ranks

as well as the 65 expected provenance graphs related to each

query. The provenance graphs were manually created and

include images resulting from a wide range of transforma-

tions, such as splicing, removal, cropping, scaling, rotation,

translation and color correction.

Aiming to enlarge NC2017-Dev1-Beta4 towards a more

realistic scenario, we extend its set of distractors by adding

nearly one million images randomly sampled from the Nimble

NC2017-Eval-Ver1 evaluation dataset [51]. The NC2017-Eval-

Ver1 dataset is the latest NIST evaluation set for measuring the

performance of diverse image-manipulation detection tasks.

However, as aforementioned, no complete provenance ground

truth is available for this set, leading us to use NC2017-Dev1-

Beta4 in conjunction with NC2017-Eval-Ver1. As a result, we

end up with what we call the NIST dataset, which comprises

the 65 provenance graphs from NC2017-Dev1-Beta4 and more

than one million distractors from both datasets.

Following NIST suggestions in [51], we perform both end-

to-end and oracle-filter provenance analysis over the NIST

dataset. On the one hand, the end-to-end analysis includes

performing the provenance image filtering task first, and then

submitting the obtained image rank to the provenance graph

construction step. On the other hand, the oracle-filter analysis

focuses on the provenance graph construction task; it assumes

that a perfect image filtering solution is available. Therefore,

only the graph construction step is evaluated.

2) Professional Dataset: Oliveira et. al [49] introduced a

multiple-parent phylogeny dataset, which comprises composite

forgeries that always have two direct ancestors, namely the

host (which is used for defining the background of the com-

posite) and the donor (which they call alien and that donates

a local portion, such as an object or person, to define the

foreground of the composite). Each phylogeny case comprises

75 images, of which three represent the composite, the host,

and the donor, and the remaining 72 represent transformations

(e.g., cropping, rotation, scale, and color transformations)

over those three images. As a consequence, each case is a

provenance graph composed of three independent phylogeny

trees (one for the host, one for the donor, and one for the

composite) that are connected through the composite and its

direct parents (the host and the donor, as expected).

Although our approach is not directly comparable to the one

of Oliveira et al. [49] (since they used different metrics and

addressed a different problem of finding the correct original

images — the graph sources — rather than the quality of the

coverage of the complete provenance graph) we make use of

their dataset for the reason of the composites being the work of

a professional artist that tried to make the images as credible

as possible. Therefore, we are assessing the metrics defined

in Sec. IV-B and reporting the results over the 80 test cases

found within the dataset. In order to adapt it to our provenance

graph building pipeline, however, we are choosing a random

image inside the provenance graph as a query for each one

of the 80 experimental cases. Finally, we do not extend the

professional dataset with distractors; hence we perform only

oracle-filter analysis over it.

3) Reddit Dataset: To supplement the experimental data

with even more realistic examples, we have collected a new

provenance dataset from image content posted to the online

Reddit community known as Photoshop battles [6]. This

community provides a medium for professional and amateur

image manipulators to experiment with image doctoring in an

environment of friendly competition. Each “battle” begins with

a single root image submitted by a user. Subsequent users then

post different modifications, usually humorous, of the image as

comments to the original post. Due to the competitive nature

of the community, many image manipulations build off one

another, as users try to outdo each other for comic effect.

This results in manipulation provenance trees with both wide

and deep chains. We use the underlying comment structure of

these battles to automatically infer the ground truth provenance

graph structure, as shown in Fig. 4.

Because these images are real examples of incremental

manipulations, the Reddit dataset accurately represents ma-

nipulations and operations performed on images in the wild.

To assure the quality of the samples, each graph was manually

reviewed. Cases with missing images within the comments or

disconnected nodes were automatically discarded. In total, the

Reddit dataset contains 184 provenance graphs, which together

sum up to 10,421 original and composite images. It will be

made available to the public upon the publication of this work.

Similar to the Professional dataset, we are not extending the

Reddit dataset with distractors; we perform only oracle-filter



9

snugglypatch  889 points 1 day ago
I’m gonna finish what he started… 
https:/i.imgur.com/OepNzqZ.png

27.6k

Darth Vader Playing Bagpipe On 
Unicycle With Fire
Submitted 2 days ago by blokmotion
368 comments  share  save  hide  give gold  report 

Shashakeitup              1588 points 1 day ago

Deleted scene from Rogue One

Pwnagelad  255 points 1 day ago
Should be the hallway scene

Shashakeitup              1588 points 1 day ago

This one?
LaerPoweredDeviltry  125 points 1 day ago
Thats terrifying

Owny_McOwnerton  55 points 1 day ago
Red=Scary

spatulababy  26 points 1 day ago
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Artunitinc                        330 points 1 day ago

https://i.imgur.com/s8gbDxJ.jpg

Fig. 4. A visualization of how provenance graphs are automatically inferred
from a Reddit Photoshop battle instance. The parent-child behavior of
comments (right) can be leveraged to infer the structure of the ground truth
provenance graph (left). The colors of each comment correspond to their
respective edge in the graph.

analysis over it.

B. Evaluation Metrics

In this work, we adopt the metrics proposed by NIST

in [51] for both the provenance image filtering and graph

construction tasks. In the case of provenance image filtering,

we report (for each image query) the CBIR recall of the

expected images at three particular cut-off ranks: R@50 (the

recall considering the top-50 images of the retrieved image

rank), R@100 (recall for the top-100 images), and R@200
(recall for the top-200 images). Given that recall expresses

the percentage of relevant images that are being effectively

retrieved, the solution delivering higher recall is considered

preferable.

In the case of provenance graph construction, we assess,

for each provenance graph that is computed for each query,

the F1-measure (i.e., the harmonic mean of precision and

recall) of the retrieved nodes and of the retrieved edges (called

vertex overlap (V O) and edge overlap (EO), respectively).

Additionally, we report the vertex and edge overlap (V EO),

which is the F1-measure of retrieving both nodes and edges,

simultaneously [59]. The aim of using such metrics is to

assess the overlap between the groundtruth and the constructed

provenance graph. The higher the values of V O, EO, and

V EO, the better the quality of the solution.

Finally, in the particular case of EO (and consequently

V EO), we report the overlap both for directed edges (which

are assumed to be the regular situation, and therefore kept

for EO and V EO), and for undirected edges (when an

edge is considered to overlap another one if they connect

analogous pairs of nodes, in spite of their orientations). All

aforementioned metrics are assessed through the NIST MediS-

core tool [50].

C. Large-Scale Infrastructure

Fig. 5 shows the proposed full pipeline for index training

and construction (previously explained in Sec. III-A2). Index

training refers to the process of learning the OPQ rotations

OPQ 
Preprocess

Coarse 
PQ

Feature Point Database

Train 
OPQ 

rotations

64D Batch 16D Batch

Train PQ 
Codebooks

PQ 
tables

Index 
Insertion

IVF Index32D Rotated Batch

On CPU

On GPU

i) ii)

iii) iv) v)

Fig. 5. Filtering pipeline infrastructure. The orange area (left) shows compu-
tations that are performed on a CPU. The purple area (right) shows the index
ingestion steps that are performed on a GPU.

Feature 
Files

File Touch
Thread

File 
Reader

File 
Reader

Initial 
Feature 

OPQ

Initial 
Feature 

OPQ

Batch 
Producer

To indexer...
...

i) ii) iii)

...

iv)

queue queue queue

Fig. 6. Producer-consumer index ingestion. Each file contains features for
an image. These file locations are pre-loaded into cache via a rate-limited
“touch” thread, and are read on a producer-consumer multi-threaded basis.

and PQ codebooks from a sampling of the local features that

are extracted from the target dataset. We propose to perform

such step ahead of time with typical central processing units

(CPU). Index construction, in turn, refers to the computation of

the inverted file indices, after properly rotating the previously

extracted local features. The learning of OPQ rotations and PQ

codebooks can be done in advance on a CPU, but the construc-

tion of indices is well suited to the capabilities of graphical

processing units (GPU), allowing for faster computation.

Besides employing GPUs to efficiently build and search

an index of over 1 million high-resolution images, additional

steps must be taken to increase the pipeline speed. To date,

most indexing algorithms require single large files containing

all features to be ingested at once [60], [61], either due to

implementation choices or algorithm limitations. The opera-

tion of concatenating all features from a set of images into a

single file is prohibitively time consuming when dealing with

more than a few million interest points. Because our scenarios

require the ingestion of multiple billions of interest points, a

different solution must be adopted, in order to avoid the need

for file concatenation. For that, we propose a multi-threaded

producer-consumer setup, as shown in Fig. 6. In our pipeline,

we provide a single feature file per image. The pipeline begins

with the “touch” thread, which systematically loads image

feature file locations into the computer’s file system cache,

for faster retrieval in later stages. Then, a reading thread takes

touched files and loads them into memory. A third thread takes

sets of loaded feature files and produces feature batches of size

B that are optimized in size for GPU ingestion. The fourth

thread applies the initial OPQ pre-processing rotations to the

feature set, before sending the final batch to the GPU. Using

this method, we are able to process billions of features from

high-resolution image datasets orders of magnitudes faster

than previous methods.
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D. Filtering Setup

In all provenance filtering experiments, we either start

describing the images with regular 64-dimensional SURF [54]

interest points, or the distributed approach explained in

Sec. III-A1 combined with the SURF detector (namely

DSURF). For the regular SURF detector, depending on the

experiment, we either extract the top-2, 000 most responsive

interest points (namely SURF2k), or the top-5, 000 most

responsive ones (SURF5k). DSURF, in turn, is always de-

scribed with 5,000 64-dimensional interest points, of which

2,500 regard the top-2, 500 most responsive ones, and the

remaining 2,500 are obtained avoiding overlap, as explained

in Sec. III-A1.

For the sake of comparison, besides reporting results of the

IVFADC system (explained in Sec. III-A2), we also report

results of the KD-Forest system discussed by Pinto et al. [15]

over the same set of images. Because the work in [15] is not

easily scalable beyond 2,000 interest points, with respect to

memory footprint, we combine it with SURF2k only (namely

KDF-SURF2k).

Focusing on the IVFADC approach, we provide combi-

nations of it with all the available low-level descriptor ap-

proaches, hence obtaining IVFADC-SURF2k (for comparison

with KDF-SURF2k), IVFADC-SURF5k, and IVFADC-DSURF.

Regardless of the descriptors, we are always performing IV-

FADC with a codebook set size of 32 codes and sub-codebook

set size of 96; both values were learned from preliminary

experiments as revealing an acceptable trade-off between index

building time and size, and final system recall. Finally, aiming

at evaluating the impact of using iterative filtering (explained

in Sec. III-A4), we evaluate variations of the two most robust

filtering solutions (namely IVFADC-SURF5k and IVFADC-

DSURF) by adding iterative filtering (IF), hence obtaining the

IVFADC-SURF5k-IF and IVFADC-DSURF-IF variations. All

filtering methods are tested over the NIST dataset, for each

one of its 65 queries.

E. Graph Construction Setup

As explained in Sec. III-B, the graph construction task

always starts with a given query and its respective rank of

potentially related images. For computing both the GCM-

based and MI-based dissimilarity matrices (all explained in

Sec. III-B1), we either detect and match the top-5,000 most

responsive SURF interest points per image, for each image

pair, or the top-5,000 largest MSER regions per image, again

for each image pair. As a consequence, we have available

four types of dissimilarity matrices, namely GCM-SURF and

GCM-MSER (both symmetric), and MI-SURF and MI-MSER

(both asymmetric).

The reason for choosing SURF and MSER is related to

their potential complementarity: while SURF detects blobs of

interest [54], MSER detects the stable complex image regions

that are tolerant to various perspective transformations [57].

Thus, the two methods end up delivering very different sets

of interest points. For extracting feature vectors from both

SURF and MSER detected interest points, we compute the 64-

dimensional SURF features proposed in [54]. In the particular

case of MSER, we compute the SURF features over the min-

imum enclosing circles that contain each one of the detected

MSER image regions. During the GCM feature matching, we

match only interest points of the same type (i.e., we match

SURF blobs with only SURF blobs, as well as MSER regions

with only MSER regions).

In the end, we construct the provenance graphs from the

four types of dissimilarity matrices using either Kruskal’s

algorithm over the symmetric GCM-based instances (therefore

obtaining undirected graphs), or the herein proposed clustered

provenance graph expansion approach, which relies on both

GCM- and MI-based instances (obtaining directed graphs).

As a result, we have available, for performing experiments, the

following options: Kruskal-SURF, obtained from GCM-SURF

adjacency matrices, Kruskal-MSER, obtained from GCM-

MSER adjacency matrices, Cluster-SURF, obtained from both

GCM- and MI-SURF matrices, and Cluster-MSER, obtained

from both GCM- and MI-MSER matrices.

All graph construction methods are tested over the NIST (65

queries), Professional (80 queries), and Reddit (184 queries)

datasets. In the particular case of the NIST dataset, we report

both end-to-end and oracle-filter analyses. Regarding end-to-

end analysis, we start with the best top-100 image ranks that

were obtained in the former set of provenance image filtering

experiments. As expected, these ranks contain distractors, as

well as miss some images related to the query that should be

part of the final provenance graph. With respect to the oracle-

filter analysis, the ranks will only contain images related to

the query.

V. RESULTS

In this section, we report the experimental results concern-

ing the tasks of provenance image filtering (in Sec. V-A) and

of provenance graph construction (in Sec. V-B).

A. Image Filtering

Table I contains the results of provenance image filtering

over the 65 queries of the NIST dataset, following the setup

detailed in Sec. IV-D. The best solution is IVFADC-DSURF-

IF, which reaches an R@50 value of 0.907, meaning that, if

we use the respective top-50 rank as input to the provenance

task, an average of 90.7% of the images directly and indirectly

related to the query will be available for graph construction.

As one might observe, the IVFADC-based solutions pre-

sented better recall values when compared to KDF-SURF2k,

even when the same number of interest points was used for

describing the images of the dataset. That is the case, for

instance, of the use of IVFADC-SURF2k, which provided an

increase of approximately 17% in R@50 over its KDF-based

counterpart (KDF-SURF2k), with an insignificant increase in

the average query time (from 0.15 to 0.17 minutes). IVFADC

makes use of CBIR state-of-the-art OPQ, which appears to be

more effective than KD-trees for indexing image content.

In addition, the GPU-amenable scalability provided by

IVFADC allowed us to increase the number of 64-dimensional

SURF interest points from 2,000 to 5,000 features per image

(reaching around five billion feature vectors for the entire
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TABLE I
RESULTS OF PROVENANCE IMAGE FILTERING OVER THE NIST DATASET.

WE REPORT THE AVERAGE VALUES ON THE PROVIDED 65 QUERIES.

Solution R@50 R@100 R@200
Query
time
(min)

KDF-SURF2k [15] 0.609 0.633 0.649 0.15

IVFADC-SURF2k 0.713 0.722 0.738 0.17

IVFADC-SURF5k 0.876 0.881 0.883 0.55

IVFADC-DSURF 0.882 0.895 0.899 0.54

IVFADC-SURF5k-
IF

0.895 0.901 0.919 2.53

IVFADC-DSURF-

IF
0.907 0.912 0.923 2.20

In bold, the solution with highest recall values.

dataset). With more interest points, the dataset is better de-

scribed, leading, for example, to an increase of nearly 23%

in R@50 for IVFADC-SURF2k over IVFADC-SURF5k. That,

however, happens at the expense of slowing down the solution

more than three times, from 0.17 to 0.55 minutes of average

query time.

The use of DSURF also increased the recall values. Its

application was responsible for an improvement of almost 7%

in R@50, when we compare IVFADC-SURF5k and IVFADC-

DSURF, at the expense of adding one more hour to the time

required to construct the index for the entire dataset. This

extra hour is related to the additional step of avoiding interest

point overlaps, which is part of the DSURF detection solu-

tion. Nevertheless, the average query time remains practically

unchanged (0.55 and 0.54 minutes, respectively), indicating

that the cost of avoiding overlaps is balanced by a description

space that generates a dataset index of better quality.

Finally, the use of IF made the recall values approach 0.9,

even considering R@50. For example, the use of IVFADC-

DSURF-IF yielded an improvement of nearly 3% in R@50

over IVFADC-DSURF. That happened, however, at the ex-

pense of a significant increase of search time, due to the

iterative re-querying nature of IF; IVFADC-DSURF-IF lasts

four times longer than IVFADC-DSURF (respectively, 0.54

and 2.20 minutes). However, in certain scenarios where time

is not a constraint, the increase of 3% in recall may justify

the deployment of such an approach.

All results reported in this article were obtained with 24

CPU cores operating at 2.4 GHz and eight Nvidia TITAN Xp

GPUs.

B. Graph Construction

We organize the results of graph construction according to

the adopted dataset (either NIST, Professional, or Reddit).

Table II shows the performance of the proposed approach

over the NIST dataset. Results are grouped into end-to-end

and oracle-filter analysis. In the particular case of end-to-

end analysis, top-100 rank lists were obtained with IVFADC-

DSURF-IF filtering, the best approach reported in Table I.

As a consequence, the respective provenance graphs are built,

TABLE II
RESULTS OF PROVENANCE GRAPH CONSTRUCTION OVER THE NIST
DATASET. WE REPORT THE AVERAGE VALUES ON THE PROVIDED 65

QUERIES.

Solution VO EO VEO

End-to-end
analysis

Kruskal-
SURF [37]

0.638 0.429† 0.537†

Kruskal-MSER 0.257 0.140† 0.199†

Cluster-SURF 0.853 0.353 0.613

Cluster-MSER 0.835 0.312 0.585

Oracle-
filter
analysis

Kruskal-
SURF [37]

0.933 0.256† 0.609†

Kruskal-MSER 0.902 0.239† 0.585†

Cluster-SURF 0.931 0.124 0.546

Cluster-MSER 0.892 0.123 0.525

†: Values for undirected edges. In bold, the solutions with the best VEO.

TABLE III
RESULTS OF PROVENANCE GRAPH CONSTRUCTION OVER THE

PROFESSIONAL DATASET. WE REPORT THE AVERAGE VALUES ON THE 80
QUERIES BELONGING TO THE TEST SET.

Solution VO EO VEO

Kruskal-

SURF [37]
0.985 0.218† 0.604†

Kruskal-MSER 0.663 0.087† 0.377†

Cluster-SURF 0.975 0.102 0.541

Cluster-MSER 0.604 0.043 0.326

†: Values for undirected edges. In bold, the solution with the best VEO.

on average, without almost 9% of the image nodes, which

are not retrieved in the filtering step (R@100 = 0.912, in

the case of IVFADC-DSURF-IF). Oracle-filter analysis, in

turn, starts from a perfect rank of images, containing all and

only the graph image nodes. That explains the higher values

of VO in such group, at the expense of reducing EO. The

reduction of EO is explained by the availability of more related

images in the step of graph construction, which increases

the number of possible edges and misconnections. It means

that the present solutions are good at removing distractors,

but there is still room to improve the effective connection

of sharing-content images. The best end-to-end solution is

Cluster-SURF, retrieving, on average, directed provenance

graphs with 0.613 ground truth-graph coverage (VEO). The

best oracle-filter solution, in turn, is Kruskal-SURF, with 0.609
undirected graph coverage.

In Table III, we present results of the proposed approaches

on the Professional dataset. In comparison to the NIST dataset,

the same solutions recognize fewer of the correct provenance

graph edges. This happens due to the larger 75-node prove-

nance graphs, which contain a number of near duplicates that

were created through reversible operations. As a consequence,

altered image nodes can be achieved using different sequences
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TABLE IV
RESULTS OF PROVENANCE GRAPH CONSTRUCTION OVER THE REDDIT

DATASET. WE REPORT THE AVERAGE VALUES ON THE PROVIDED 184
QUERIES.

Solution VO EO VEO

Kruskal-
SURF [37]

0.884 0.156† 0.523†

Kruskal-MSER 0.924 0.121† 0.526†

Cluster-SURF 0.757 0.037 0.401

Cluster-MSER 0.509 0.027 0.271

†: Values for undirected edges. In bold, the solution with the best VEO.

of image transformations, leading to ambiguous dissimilarity

values, and multiple plausible paths, within the provenance

graph. The methods herein discussed are solely based on

image content and do not consider any extra information,

thus operating with data from only the pixel domain. Indeed,

in previous image phylogeny work reporting results on the

Professional dataset, the solutions made use of data from the

JPEG compression tables of the images. We speculate that if

information regarding the compression factor is included in the

present approaches, some confusion regarding the edges can be

eliminated. That would not impact the NIST dataset, though,

since only a small fraction of its images are available in JPEG

format. Here, the best solution is Kruskal-SURF, retrieving,

on average, undirected provenance graphs with 0.604 ground

truth-graph coverage (VEO).

Table IV reports results on the Reddit dataset. As one might

observe, this dataset is the most challenging one, with low

directed edge coverage (namely EO, in the case of Cluster-

SURF and Cluster-MSER solutions). Since its whimsical

content is the product of a diverse community, the Reddit

dataset presents realistic, yet frustratingly complex, cases. As

a consequence, it is not uncommon to find among the 184

collected provenance graphs suppressed ancestral images, as

well as descendant images whose parental connections are

defined by very particular and contextual semantic reasons

(for instance, an arbitrary person resembling another in the

parent image), than by strictly shared visual content. That

ends up impacting our results. The best solution is Kruskal-

MSER, which retrieves, on average, undirected provenance

graphs with 0.526 ground truth-graph coverage (VEO).

With respect to runtime, the SURF-based graph construction

solutions (namely Kruskal-SURF and Cluster-SURF) individ-

ually spent, on average, 12 minutes to process 100×100 image

adjacency matrices on 16 CPU cores operating at 2.4 GHz. The

MSER-based solutions (namely Kruskal-MSER and Kruskal-

MSER), in turn, spent around 15 minutes to process the same

amount of data on the same hardware. This was expected,

since the MSER detection process is reportedly slower than

SURF. Moreover, taking Kruskal’s algorithm in perspective

with the proposed clustered solution, the obtained differences

in runtime were always below one millisecond, in favor of

Kruskal, for the same data and hardware.

VI. CONCLUSIONS

The determination of image provenance is a difficult task

to solve. The complexity increases significantly when consid-

ering an end-to-end, fully-automatic provenance pipeline that

performs at scale. This is the first work, to our knowledge,

to have proposed such a technique, and we consider these

experiments an important demonstration of the feasibility of

large-scale provenance systems.

Our pipeline included an image indexing scheme that uti-

lizes a novel iterative filtering and distributed interest point

selection to provide results that outperform the current state-

of-the-art found in [15]. We also proposed methods for

provenance graph building that improve upon the methods of

previous work in the field, and provided a novel clustering

algorithm for further graph improvement.

To analyze these methods, we utilized the NIST Nimble

Challenge [62] and the multiple-parent phylogeny Professional

dataset [49] to generate detailed performance results. Beyond

utilizing these datasets, we committed to real-world prove-

nance analysis by building our own dataset from Reddit [6],

consisting of unique manipulation scenarios that were gener-

ated in an unconstrained environment. This is the first work

of its kind to analyze fully in-the-wild provenance cases.

Upon scrutinizing the results from the three differently

sourced datasets, we observed that the proposed approaches

perform decently well in connecting the correct set of images

(with reported vertex overlaps of nearly 0.8), but still struggle

when inferring edge directions — a result that highlights the

difficulty of this problem. Directed edges are dependent on

whether the transformations are reversible or can be inferred

from pixel information. In this attempt to perform provenance

analysis, we found that although image content is the most

reliable source of information connecting related images, other

external information may be required to supplement the knowl-

edge obtained from pixels. This external information can be

obtained from file metadata, object detectors and compression

factors, whenever available.

Work in this field is far from complete. The problem of

unconstrained, fully-automatic image provenance analysis is

not solved. For instance, this work does not currently utilize

previous work found in the Blind Digital Image Forensics

(BDIF) field. Significant improvements in region localization,

provenance edge calculation, and even edge direction estima-

tion could be performed by using systems already created in

the BDIF field. We plan to explore the benefits of integrating

splicing and copy-move detectors, along with Photo Response

Non-Uniformity (PRNU), and Color Filter Array (CFA) mod-

els into our pipeline for detecting image inconsistencies and

building higher accuracy dissimilarity matrices.

While this work is a significant first step, we hope to spur

others on to further investigate fully-automatic image forensics

systems. As the landscapes of social and journalistic media

change, so must the field of image forensics adapt with them.

News stories, cultural trends, and social sentiments flow at a

fast pace, often fueled by unchecked viral images and videos.

There is a pressing need to find new solutions and approaches

to combat forgery and misinformation. Further, the dual-use
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nature of such systems makes them useful for other applica-

tions, such as cultural analytics, where image provenance can

be a primary object of study. We encourage researchers to

think broadly when it comes to image provenance analysis.
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