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Abstract

This chapter explores data-driven approaches to presentation attack detection for
three biometric modalities: face, iris and fingerprint. The primary aim of this chapter
is to show how pre-trained deep neural networks can be used to build classifiers that
can distinguish between authentic images of faces, irises and fingerprints and their
static imitations. The most important, publicly available benchmarks representing
various attack types were used in a unified presentation attack detection framework
in both same-dataset and cross-dataset experiments. The pre-trained VGG neural
networks, being the core of this solution, tuned independently for each modality and
each dataset present almost perfect accuracy for all three biometric techniques. In turn,
low classification accuracies achieved in cross-dataset evaluations show that models
based on deep neural networks are sensitive not only to features specific to biometric
imitations, but also to dataset-specific properties of samples. Thus, such models can
provide a rapid solution in scenarios in which properties of imitations can be predicted
but appropriate feature engineering is difficult. However, these models will perform
worse if the properties of imitations being detected are unknown. This chapter includes
also a current literature review summarizing up-to-date data-driven solutions to face,
iris and finger liveness detection.

1 Introduction

Biometric authentication is a technology designed to recognize humans automatically based
on their behavior, physical and chemical traits. Recently, this technology emerged as
an important mechanism for access control in many modern applications, in which the
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traditional methods including the ones based on knowledge (e.g., keywords) or based on
tokens (e.g., smart cards) might be ineffective since they are easily shared, lost, stolen or
manipulated [36]. Biometric technologies are increasingly used as the main authenticating
factor for access control and also jointly with traditional authentication mechanisms, as a
“step-up authentication” factor in two- or three-factor authentication systems.

In this context, face, iris and fingerprint are the most commonly-used biometric traits.
In fact, the choice of the trait to be used takes into account some issues such as universality,
easiness to measure the biometric characteristics, performance, or difficulty to circumvent
the system [36]. However, a common disadvantage of these traits is that an impostor might
produce a synthetic replica that can be presented to the biometric sensor to circumvent
the authentication process. In the literature, the mechanisms to protect the biometric
system against this type of attack are referred to as spoofing detection, liveness detection
or presentation attack detection (PAD). Hereinafter, we will use the most generic term,
presentation attack detection (PAD), which was initially proposed by SC37 experts in
ISO/IEC 30107 – Presentation Attack Detection – Framework (Part 1), Data Formats
(Part 2), and Testing and Reporting (Part 3).

The idea of spoofing biometric recognition is surprisingly older than biometrics itself.
A careful reader of the Old Testament can find an impersonation attempt described in
the Book of Genesis, based on presentation of a goat’s fur put on Jacob’s hand to imitate
properties of Esau’s skin, so that Jacob would be blessed by Isaac. A fictitious example
that is surprisingly realistic is the description of how to copy someone’s fingerprint using
a wax mold and gelatin presented by Austin Freeman in his crime novel “The Red Thumb
Mark”. The novel appeared in 1907, and the technique described is still used almost
100 years later to spoof fingerprint sensors. Note that this description appeared only four
years after fingerprints were adopted by Scotland Yard, and long before the first fingerprint
sensor appeared on the market.

Recent scientific studies and open challenges such as LivDet (www.livdet.org) sug-
gest that presentation attacks are still an open problem in biometrics. Phan and Boulke-
nafet [6, 73] suggest that face recognition systems are vulnerable to presentation attacks
with an equal error rate (related to distinguishing presentation attacks from genuine sam-
ples) reaching as high as 9%. Fingerprint-based recognition systems still face the same
problem, with an average classification error rate achieving 2.9% [60]. Iris-based authenti-
cation, considered by many to be one of the most reliable biometrics, awaits efficient PAD
methodology. Recent proposals in this area still report an average classification error rate
around 1% [80].

Besides the laboratory testing of the biometric system’s vulnerability to attack, a few
real cases also confirm the problem. In the small city of Ferraz de Vasconcelos, in the
outskirts of São Paulo, Brazil, a physician of the service of mobile health care and urgency
was caught red-handed by the police in a scam that used silicone fingers to bypass an
authentication system and confirm the presence several colleagues at work [49]. A similar
case has been investigated by the Brazilian Federal Police in 2014, when workers at the
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Figure 1: General pipeline exploited in this work. Initial network architectures, originally
proposed for other problems, are independently fine-tuned with appropriate PAD examples
from different datasets leading to discriminative features. Ultimately, classifiers are trained
to separate between authentic images of faces, irises and fingerprints from their presentation
attack versions.

Paranaguá Harbor in the Brazilian southern state of Paraná, were suspected of using
silicone fingers to circumvent a time attendance biometric system [8]. In Germany, the
biometric hacking team in the Chaos Computer Club managed to hack Apple’s iPhone
Touch ID [3] a few days after its launch, demonstrating that a biometric system without
an adequate protection is unsuitable as a reliable access control method. Other cases of
spoofing surveillance systems with 3-D masks to change their apparent age or race can also
be found in [84,85].

Considering the three aforementioned modalities, when we look at the literature and
analyze the algorithms to prevent presentation attacks, we observe that the most promising
in terms of errors and minimum effort of implementation or cost often share an interesting
feature: they belong to a group of algorithms referred to as data-driven characterization
algorithms. According to Pinto et al. [75], methods based on data-driven characterization
exploit only the data that comes from a standard biometric sensor looking for evidence
of artifacts in the already acquired biometric sample. Such approaches are preferable in
practice because they are easily integrable with the existing recognition systems, as there
is no extra requirement in terms of hardware nor is there the need of human interaction to
detect attempted attacks.

Although the existing methods following this idea have led to good detection rates,
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we note that some aspects still need to be taken into account when evaluating a PAD
approach, e.g., different types of attack, variety of devices to perform attempted attacks,
and attacks directed to different sensors. Another aspect that is normally overlooked is
that most detection methods are custom-tailored to specific types of presentation attacks,
in what we refer to as hand-crafting of the features. With the emergence of deep learning
methods and their success in tasks such as image classification, voice recognition and
language translation, in this chapter, we set forth the objective of exploiting deep learning
solutions for detecting presentation attacks, using data-driven solutions. In these cases,
the biometric designer is responsible for choosing an appropriate architecture for PAD
and training solely from the existing data available. We believe that this type of solution
is the next step when designing robust presentation attack detectors and also that they
can, if carefully designed, better deal with the challenging cross-dataset scenario. The
cross-dataset scenario arises when the system is trained with a dataset from one sensor or
one scenario, and then later tested on data from a different sensor or scenario. Figure 1
depicts the general pipeline we exploit in this chapter. We start with pre-trained deep
neural networks and tune them independently for each modality (face, iris and fingerprint)
with different datasets before building the final classifiers to distinguish between authentic
images of faces, irises and fingerprints from their static counterparts.

We organize the rest of this Chapter as follows. Section 2 discusses state-of-the-art
methods for PAD considering the three modalities considered in this chapter (face, iris
and fingerprint). Section 3 details the data-driven PAD solution that we advocate as very
promising for this problem, while Section 5 shows the experiments and validations for
different biometric spoofing datasets. We close the chapter with some final considerations
in Section 6.

2 Related Work

In this section, we review some of the most important presentation-attack detection meth-
ods published in the literature for iris, face and fingerprint.

2.1 Face Presentation Attack Detection

The existing face anti-spoofing techniques can be categorized into four groups [90]: user
behavior modeling [67, 109] (e.g., eye blinking, small face movements), methods that re-
quire additional hardware [18] (e.g., infrared cameras and depth sensors), methods based
on user cooperation (e.g., challenge questions) and, finally, data-driven characterization
approaches, which is the focus of our work herein.

We start this section reviewing frequency-based approaches, which are methods that
rely on analyzing artifacts that are better visible in the frequency domain. Early studies
followed this idea [48], and nowadays we have several works that support the effectiveness
of this approach in detecting face spoofing. In [48], Li et al. proposed a face spoofing
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detection that emerged from the observation that the faces in photographs are smaller
than the real ones and that the expressions and poses of the faces in photographs are
invariant. Based on these observations, the authors devised a threshold-based decision
method for detecting photo-based attempted attacks based on the energy rate of the high
frequency components in the 2-D Fourier spectrum. The major limitation of the technique
proposed by Li et al. is that the high frequency components are affected by illumination,
which makes this frequency band too noisy [48,102]. To reduce that effect, Tan et al. [102]
exploited the difference of image variability in the high-middle band. This is done using
Difference of Gaussian (DoG) bandpass filtering, which keeps as much detail as possible
without introducing noisy or aliasing artifacts.

In [74], Pinto et al. introduced an idea seeking to overcome the illumination effect when
working in the frequency domain. In that work, the authors proposed a face anti-spoofing
method for detecting video-based attempted attacks based on Fourier analysis of the noise
signature extracted from videos, instead of using the image pixel values directly. Basically,
after isolating the noise signal present in the video frames, the authors transformed that
information to the Fourier domain and used the visual rhythm technique to capture the
most important frequency components to detect an attempted attack, taking advantage
of the spectral and temporal information. In a more recent work [76], the same authors
expanded upon this technique taking advantage of the spectral, temporal and spatial infor-
mation from the noise signature, using the concept of visual codebooks. According to the
authors, the new method enabled them to detect different types of attacks such as print-
and mask-based attempted attacks as well.

Lee et al. [47] proposed an anti-spoofing technique based on the cardiac pulse measure-
ments using video imaging [78]. The authors extended upon previous work proposed by
Poh et al. [78] by adding a threshold-based decision level based on the entropy measure.
It was calculated from the power spectrum obtained from normalized RGB channels af-
ter eliminating the cross-channel noise, caused by the environment interference, using the
Independent Component Analysis (ICA).

Another expressive branch of face anti-spoofing algorithms reported in the literature
consists of texture-based approaches. In general, those algorithms exploit textural cues
inserted in the fake biometric samples during its production and presentation to the bio-
metric sensor under attack (e.g., printing defects, aliasing and blurring effects). Tan et
al. [102] proposed a texture-based approach to detect attacks with printed photographs
based on the difference of the surface roughness of an attempted attack and a real face.
The authors estimate the luminance and reflectance of the image under analysis and clas-
sify them using Sparse Low Rank Bilinear Logistic Regression methods. Their work was
extended upon by Peixoto et al. [70], who incorporated measures for different illumination
conditions.

Similar to Tan et al. [102], Kose et al. [41] evaluated a solution based on reflectance to
detect attacks performed with printed masks. To decompose the images into components
of illumination and reflectance, the Variational Retinex [1] algorithm was applied.
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Määttä et al. [52,53] relied on micro textures for face spoofing detection, inspired by the
characterization of printing artifacts and by differences in light reflection when comparing
real samples and presentation attack samples. The authors proposed a fusion scheme
based on the Local Binary Pattern (LBP) [61], Gabor wavelets [15], and Histogram of
Oriented Gradients (HOG) [13]. Similarly, to find a holistic representation of the face
able to reveal an attempted attack, Schwartz et al. [90] proposed a method that employs
different attributes of the images (e.g., color, texture and shape of the face).

Chingovska et al. [9] investigated the use of different variations of the LBP operator
used in [52]. The histograms generated from these descriptors were classified using χ2

histogram comparison, Linear Discriminant Analysis (LDA) and Support Vector Machine
(SVM).

Face spoofing attacks performed with static masks have also been considered in the
literature. Erdogmus et al. [17] explored a database with six types of attacks using facial
information of four subjects. To detect attempted attacks, the authors used two algorithms
based on Gabor wavelet [46] with a Gabor-phase based similarity measure [32].

Pereira et al. [71] proposed a score-level fusion strategy for detecting various types of
attacks. The authors trained classifiers using different databases and used the Q statistics
to evaluate the dependency between classifiers. In a follow-up work, Pereira et al. [72]
proposed an anti-spoofing solution based on the dynamic texture, which is a spatiotemporal
version of the original LBP.

Garcia et al. [24] proposed an anti-spoofing method based on detection of the Moiré
patterns, which appear due to the overlap of the digital grids. To find these patterns, the
authors used a peak-detector algorithm based on maximum-correlation thresholding, in
that strong peaks reveal an attempted attack. Similar to [24], Patel et al. [69] proposed a
presentation attack detection technique also based on the Moiré pattern detection, which
uses the the multi-scale version of the LBP descriptor (M-LBP).

Tronci et al. [106] exploited the motion information and clues that are extracted from
the scene by combining two types of processes, referred to as static and video-based analysis.
The static analysis consists of combining different visual features such as color, edge, and
Gabor textures, whereas the video-based analysis combines simple motion-related measures
such as eye blink, mouth movement, and facial expression change.

Anjos et al. [2] proposed a method for detecting photo-based attacks assuming a sta-
tionary facial recognition system. According to the authors, the intensity of the relative
motion between the face region and the background can be used as a clue to distinguish
valid access of attempted attacks, since the motion variations between face and background
regions exhibit greater correlation in the case of attempted attacks.

Wen et al. [108] proposed a face spoof detection algorithm based on image distortion
analysis (IDA), describing different features such as specular reflection, blurriness, chro-
matic moment, and color diversity. These features are concatenated in order to generate
feature vectors, which are used to generate an ensemble classifier, each one specialized to
detect a type of attempted attack.
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Kim et al. [38] proposed a method based on the diffusion speed of a single image to
detect attempted attacks. The authors define the local patterns of the diffusion speed,
namely local speed patterns via Total Variation (TV) flow [86], which are used as feature
vectors to train a linear classifier, using the SVM, to determine whether the given face
is fake. In turn, Boulkenafet et al. [7] proposed an anti-spoofing technique using a color
texture analysis. Basically, the authors perform a micro-texture analysis considering the
color-texture information from the luminance and the chrominance channels by extracting
feature descriptions from different color spaces.

Different from the previous methods, which focus on defining a presentation attack
detection that does not leverage the identity information present in the gallery, Yang et
al. [111] proposed a person-specific face anti-spoofing approach, in which a classifier was
built for each person. According to the authors, this strategy minimizes the interferences
among subjects.

Virtually all previous methods exploit handcrafted features to analyze possible clues
related to a presentation attack attempt. Whether these features are related to texture,
color, gradients, noise or even reflection, blurriness, and chromatic moment, they always
come down to the observation of specific artifacts present in the images and how they can
be captured properly. In this regard, LBP stands out as the staple of face-based spoofing
research thus far. Departing from this hand-crafted characterization modeling strategy, a
recent trend in the literature has been devoted to designing and deploying solutions able to
directly learn, from the existing available training data, the intrinsic discriminative features
of the classes of interest, the so-called data-driven characterization techniques, probably
motivated by the huge success these approaches have been showing in other vision-related
problems [42,100]. Out of those, the ones based on deep learning solutions stand out right
away as very promising for being highly adaptive to different situations.

Menotti et al. [58] aimed at hyperparameter optimization of network architectures [4,
77] (architecture optimization) and on learning filter weights via the well-known back-
propagation algorithm [45] (filter optimization) to design a face spoofing detection ap-
proach. The first approach consists of learning suitable convolutional network architec-
tures for each domain, whereas the second approach focuses on learning the weights of the
network via back propagation.

Manjani et al. [54] proposed an anti-spoofing solution based on a deep dictionary learn-
ing technique originally proposed in [104] to detect attempted attacks performed using
silicone masks. According to the authors, deep dictionary learning combines concepts of
two most prominent paradigms for representation learning, deep learning and dictionary
learning, which enabled the authors to achieve a good representation even using a small
data for training.
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2.2 Fingerprint Presentation Attack Detection

Fingerprint PAD methods can be categorized into two groups: hardware-based and software-
based solutions [27]. Methods falling into the first group use information provided from
additional sensors to gather artifacts that reveal a spoofing attack that is outside of the
fingerprint image. Software-based techniques rely solely on the information acquired by
the biometric sensor of the fingerprint authentication system.

Based on several quality measures (e.g., ridge strength or directionality, ridge continu-
ity), Galbally et al. [20, 21] proposed a set of features aiming at fingerprint presentation
attack detection, which were used to feed a Linear Discriminant Analysis (LDA) classifier.

Gragnaniello et al. [29] proposed an anti-spoofing solution based on Weber Local De-
scriptor (WLD) operating jointly with other texture descriptors such as Local Phase Quan-
tization (LPQ) and Local Binary Pattern Descriptor (LBP). The experimental results
suggest that WLD and LPQ complement one another, and their joint usage can greatly
improve their discriminating ability, even when compared individually or combined with
LBP.

Inspired by previous works based on LBP descriptor, Jia et al. [37] proposed a spoofing
detection scheme based on Multi-scale Block Local Ternary Patterns (MBLTP) [103]. Ac-
cording to the authors, the computation of the LTP descriptor is based on average values
of block subregions rather than individual pixels, which makes it less sensitive to noise,
since the computation is based on a 3-value code representation and on average values of
block subregions, rather than on individual pixels.

Ghiani et al. [25] proposed the use of Binarized Statistical Image Features (BSIF),
a textural binary descriptor whose design was inspired by the LBP and LPQ methods.
Basically, the BSIF descriptor learns a filter set by using statistics of natural images [34],
leading to descriptors better adapted to the problem. The same authors also explored the
LPQ descriptor to find a feature space insensitive to blurring effects [26].

In [28], Gottschlich proposed another idea based on filter learning convolution com-
parison pattern. To detect a fingerprint spoofing, the authors compute the discrete cosine
transform (DCT) from rotation invariant patches, and compute their binary patterns by
comparing pairs of DCT coefficients. These patterns are gathered in a histogram, which
was used to feed a linear SVM classifier.

Rattani et al. [82] introduced a scheme for automatic adaptation of a liveness detector
to new spoofing materials in the operational phase. The aim of the proposed approach
is to reduce the security risk posed by new spoof materials on an anti-spoofing system.
The authors proposed a novel material detector specialized to detect new spoof materials,
pointing out the need for retraining the system with the new material spotted.

Similar to [82], Rattani et al. [83] proposed an automatic adaptation anti-spoofing sys-
tem composed of an open-set fingerprint spoofing detector and by a novel material detector,
both based on Weibull-calibrated SVM (W-SVM) [88]. The novel material detector was
built with a multi-class W-SVM, composed by an ensemble of pairs of 1-Class and binary
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SVMs, whereas the open set fingerprint spoofing detector was trained with features based
on textural [26], physiological [55] and anatomical [101] attributes.

Gragnaniello et al. [31] proposed a fingerprint spoofing detection based on both spatial
and frequency information, in order to extract local amplitude contrast, and local behavior
of the image, which were synthesized by considering the phase of some selected transform
coefficients generated by the short-time Fourier transform (STFT). This information gen-
erates a bi-dimensional contrast-phase histogram, which was used to train a linear SVM
classifier.

Kumpituck et al. [44] exploited an anti-spoofing schema based on wavelet decomposition
and LBP operator. In this work, the authors extract LBP histograms from several wavelet
sub-band images, which were concatenated and used to feed an SVM classifier. The authors
also evaluated a more conventional approach that consists of calculating the energy from
wavelet sub-bands instead of the LBP histograms. Experimental results show that wavelet-
LBP descriptor achieved a better discrimination than wavelet-energy and LBP descriptors
used separately, besides achieving competitive results with the state-of-the-art methods.

Finally, also departing from the traditional modeling, which uses basically texture pat-
terns to characterize fingerprint images, Nogueira et al. [60] proposed a fingerprint anti-
spoofing technique based on the concept of pre-trained convolutional neural networks. Ba-
sically, the authors use well-known CNN architectures in the literature such as AlexNet [42]
and VGG [95] as their starting point for learning the network weights for fingerprint spoof-
ing detection.

Marasco et al. [56] investigated two well-known CNN architectures, the GoogLeNet [99],
CaffeNet [42], in order to analyze their robustness in detecting unseen spoof materials and
fake samples from new sensors. As mentioned before, Menotti et al. [58] also proposed
hyperparameter optimization of network architectures along with filter optimization tech-
niques for detecting fingerprints presentation attacks.

2.3 Iris Presentation Attack Detection

Early work on iris spoofing detection dates back to the 1990’s, when Daugman [14] discussed
the feasibility of some attacks on iris recognition systems. In that work, he proposed to
detect such attempts using the Fast Fourier Transform to verify the high frequency spectral
magnitude.

According to Czajka [12], solutions for iris liveness detection can be categorized into
four groups, as Cartesian product of two dimensions: type of measurement (passive or
active) and type of model of the object under test (static / dynamic). Passive solutions
mean that the object is not stimulated more than it is needed to acquire an iris image for
recognition purpose. Hence, it typically means that no extra hardware is required to detect
an attempted attack. Active solutions try to stimulate an eye and observe the response to
that stimuli. It means that typically some extra hardware elements are required. In turn,
the classification between static and dynamic objects means that the algorithm can detect
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an attempted attack using just one (static) image from the biometric sensor or needs to
use a sequence of images to observe selected dynamic features. In this section, we review
only passive and static methods, which is the focus of this chapter.

In [66], Pacut et al. introduced three iris liveness detection algorithms based on the
analysis of the image frequency spectrum, controlled light reflection from the cornea and
pupil dynamics. These approaches were evaluated with paper printouts produced with
different printers and printout carriers, and shown to be able to spoof two commercial iris
recognition systems. A small hole was made in the place of the pupil, and this trick was
enough to deceive commercial iris recognition systems used in their study. The experimen-
tal results obtained on the evaluation set composed of 77 pairs of fake and live iris images
showed that the controlled light reflections and pupil dynamics achieve zero for both False
Acceptance Rate and False Rejection Rate. In turn, two commercial cameras were not
able to detect 73.1% and 15.6% of iris paper printouts and matched them to biometric
references of authentic eyes.

Galbally et al. [23] proposed an approach based on 22 image quality measures (e.g., fo-
cus, occlusion, and pupil dilation). The authors use sequential floating feature selection [79]
to single out the best features, which were used to feed a quadratic discriminant classifier.
To validate the proposed approach, the authors used the BioSec [19,87] benchmark, which
contains print-based iris spoofing attacks. Similarly, Sequeira et al. [91] also exploited im-
age quality measures [23] and three different classification techniques, validating the work
on BioSec [19,87] and Clarkson [89] benchmarks and introducing the MobBIOfake bench-
mark comprising 800 iris images. Sequeira et al. [92] extended upon previous work using
a feature selection step to obtain a better representation to detect an attempted attack.
The authors also applied iris segmentation [59] to obtain the iris contour and adapted the
feature extraction processes to the resulting non-circular iris regions.

In [107], Wei et al. addressed the problem of iris liveness detection based on three
texture measures: iris edge sharpness (ES), iris-texton feature for characterizing the visual
primitives of iris texture (IT) and using selected features based on co-occurrence matrix
(CM). In particular, they used fake iris wearing color and textured contact lenses. The
experiments showed that the ES feature achieved comparable results to the state of the
art methods at that time, and the IT and CM measures outperformed the state of the art
algorithms.

Czajka [10] proposed a solution based on frequency analysis to detect printed irises.
The author associated peaks found in the frequency spectrum to regular patterns observed
for printed samples. This method, tuned to achieve close-to-zero false rejection rate (i.e.,
not introducing additional false alarms to the entire system), was able to detect 95% of
printed irises. This paper also introduced the Warsaw LivDet-Iris-2013 dataset containing
729 fake images and 1, 274 images of real eyes.

Texture analysis has also been explored for iris spoofing detection. In the MobILive [93]
iris spoofing detection competition, the winning team relied upon three texture descriptors:
LBP [62], LPQ [64] and Binary Gabor Pattern (BGP) [112]. Sun et al. [98] recently
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proposed a general framework for iris image classification based on a Hierarchical Visual
Codebook (HVC). The HVC encodes the texture primitives of iris images and is based on
two existing bag-of-words models. The method achieved a state-of-the-art performance for
iris spoofing detection, among other tasks related to iris recognition.

Doyle et al. [16] proposed a solution based on modified Local Binary Patterns
(mLBP) [63] descriptor. In this work, the authors show that although it is possible to
obtain good classification results using texture information extracted by the mLBP de-
scriptor, when lenses produced by different manufacturers are used, the performance of
this method drops significantly. They report 83% and 96% of correct classification when
measured on two separated datasets, and a significant drop in accuracy when the same
method was trained on the one dataset and tested on the other dataset: 42% and 53%, re-
spectively. This cross-dataset validation has been shown to be very challenging and seems
to be recommended in several validation setups for presentation attack detection. Yadav
et al. [110] extended upon the previous work by analyzing the effect of soft and textured
contact lenses on iris recognition.

In [81], Raja et al. proposed an anti-spoofing method based on Eulerian Video Magni-
fication (EVM) [5], which was applied to enhance the subtle phase information in the eye
region. The authors proposed a decision rule based on cumulative phase information, which
was applied by using a sliding window approach upon the phase component for detecting
the rate of the change in the phase with respect to time.

Raghavendra et al. [80] proposed a novel spoofing detection scheme based on a multi-
scale version of the Binarized Statistical Image Features (BSIF) and linear Support Vector
Machine (SVM). Gupta et al. [33] proposed an anti-spoofing technique based on local
descriptors such as LBP [61], HOG [13], and GIST [65], which provide a representation
space by using attributes of the images such as color, texture, position, spatial frequency,
and size of objects present in the image. The authors used the feature vectors produced
by the three descriptors to feed a nonlinear classifier and decide whether an image under
analysis is fake.

Czajka [11] proposed an iris spoofing detection based on pupil dynamics. In that work,
the author used the pupil dynamics model proposed by Kohn and Clynes [39] to describe
its reaction after a positive light stimuli. To decide whether the eye is alive, the author used
variants of the SVM to classify feature vectors that contain the pupil dynamic information
of a target user. This work has been further extended to a mixture of negative and positive
light stimuli [12] and presented close-to-perfect recognition of objects not reacting to light
stimuli as expected for a living eye.

Finally, Lovish et al. [50] proposed a cosmetic contact lens detection method based
on Local Phase Quantization and Binary Gabor Patterns, which combines the benefits of
both LBP and Gabor filters [112]. The histograms produced for both descriptors were
concatenated and used to build a classification model based on SVM algorithm.

Similarly to the approaches tackling the presentation attack problem in fingerprint
and faces, handcrafted texture features seem to be the preferred choice in iris spoofing
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detection. Methods inspired by LBP, visual codebooks and quality metrics are the most
popular methods so far. In this sense, the works of Menotti et al. [58] and Silva et al. [94],
which exploit data-driven solutions for this problem, are sufficiently different from the
previous methods and present very promising results.

2.4 Unified Frameworks to Presentation Attack Detection

Galbally et al. [22] proposed a general approach based on 25 image quality features to detect
attempt attacks in face, iris and fingerprint biometric systems simultaneously. Evaluations
performed upon popular benchmarks for three modalities show that this approach is highly
competitive, considering the state-of-the-art methods dedicated for single modalities.

In [30], Gragnaniello et al. evaluated several local descriptors for face-, fingerprint- and
iris-based biometrics in addition to the investigation of promising descriptors using the
Bag-of-Visual-Word (BoVW) model [97], Scale-Invariant Feature Transform (SIFT) [51],
DAISY [105], and the Shift-Invariant Descriptor (SID) [40].

Menotti et al. [58] (mentioned earlier in this section) showed that the combination of
architecture optimization and filter optimization provides better comprehension of how
these approaches interplay for face, iris and fingerprint PAD, and also outperforms the
best known approaches for several benchmarks.

In this chapter, we decided to explore data-driven solutions for spoofing detection in
different modalities based on deeper architectures than the one used in [58] and evaluate
the effects of such decision. Our objective is to show the potential of this approach but
also highlight its limitations, especially related to cross-dataset experiment.

3 Methodology

In this section, we present the convolutional neural network that we adopted to PAD for
face, fingerprint and iris. Our objective is simply to show that this new trend in the
literature is also relevant for the task of presentation attack detection and that research
in this direction needs to be considered. At the same time, we also show that even when
adopting a powerful image classification technique such as deep neural networks, we still
cannot deal effectively with the very challenging cross-dataset problem. As a result, it
is clear that the research community now needs to shift its attention to cross-dataset
validation setups (or, more general, open-set classification) as they are closer to real-world
operational conditions when deploying biometric systems.

3.1 Network Architecture

For this work, we adopted the VGG network architecture proposed by [96]. However, that
network was first proposed for object recognition and not presentation attack detection.
Therefore, for each problem of interest (PAD in face, iris and fingerprint), we adapt the
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network’s architecture as well as fine-tune its weights to our two-class problem of interest.
Training the network from scratch to our problem is also a possibility if enough training
samples (normal and presentation attack samples) are available. However, as this is not
often the case in this area, it is recommended to start the network weights with a related
(source) problem and then adapt these weights with training examples of a target problem.

Figure 2 depicts the network architecture we adopted in this work. During training,
the network’s input consists of fixed-size 224 × 224 RGB images which go through a stack
of convolutional layers comprising filters with a very small receptive field (3 × 3). In
this network, the convolution stride is fixed to one pixel and the spatial zero-padding for
convolutional operation is also of one pixel. There are five max-pooling layers in this
network (carefully placed after some convolution layers). The max-poolings are performed
over a 2 × 2 pixel window, with stride 2.

The stack of convolutional layers is followed by three fully-connected (FC) layers: the
first two have 4,096 units each, while the the third layer performs the 2-way spoofing
classification problem of our interest (originally this was an FC layer with 1,000 units
for the ImageNet 1,000-way classification problem). The final layer is the soft-max layer
translating the outputs of 2-unit layer into a posterior probabilities of class membership.
Each unit in the hidden layers has a rectified linear (ReLU) activation function [43]. The
depth of convolution layers or, in other words, their number of channels, starts with 64
and is iteratively doubled after each max-pooling layer to a maximum of 512.

3.2 Training and Testing

For training, we start with the network trained to a source problem whenever it is possi-
ble. To detect presentation attacks with faces, we initialize the network with the weights
learned for face recognition [68]. However, the closest problem we had for iris and finger-
prints was general image classification. Therefore, presentation attack detection for iris
and fingerprints is performed by the network initialized with the weights pre-computed for
the ImageNet classification problem. The first convolutional layers act mostly as a generic
feature detectors (such as edges) and are suitable for different computer vision tasks. How-
ever, each next convolutional layer is more context-focused and extracts features that are
task-related. Hence, using last layers trained for general object recognition in visual spoof-
ing detection is not optimal, and a large improvement may be achieved by specializing the
network. Certainly, a preferable solution is to initialize the weights with those used in net-
works solving iris- and fingerprint-related tasks, as the network would have been specialized
to this type of imagery. However, since training of such networks from the scratch requires
a lot data and effort, it is still a good move to initialize own network with image-related
weights than just purely at random and tune its weights if there is not enough available
training data.

Once a source set of weights to initialize the network is chosen, the fine-tuning follows
a standard procedure: selects the training set of the target domain and uses it to perform

13



Figure 2: Adopted network architecture, originally proposed for object recognition by the
Visual Geometry Group and thus referred to as VGG network [96].

forward passes and back-propagation in the network. The test for an input image is
straightforward. Just resize it to the network’s input size and feed it to the network.
As the network has been fully adapted to the target problem of interest, it will already
produce a two-class output.

More specifically, for the cases of fingerprints, the input images in a dataset are center-
cropped and resized to 224 × 224 pixels, which is the standard input size of the VGG
network. The centering happens through calculating the average of black pixels in the
binary fingerprint image and keeping all the rows/columns with a density of black pixels
greater than the global image average plus or minus 1.8 standard deviations of each respec-
tive row/column. This is used to eliminate the borders without any useful information.
For optimizing the network in the fingerprint case, we use the standard SGD solver im-
plemented in Caffe with the following hyperparameters: base learning rate of 0.0001, step
lr policy, step size of 2,000, momentum of 0.9, weight decay of 0.0002, gamma of 0.5 and
maximum of 2,001 iterations.

In the case of faces, we center-cropped the images based on the eye coordinates calcu-
lated with the aid of Face++1. Upon center-cropping, the image is resized to 224 × 224
pixels. For optimizing the network in the face case, we use the standard SGD solver im-

1http://www.faceplusplus.com/
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plemented in Caffe with the following hyper parameters: base learning rate of 0.001, step
lr policy, step size of 1,000, momentum of 0.9, weight decay of 0.0005, gamma of 0.001 and
maximum number of iterations of 4,000.

For irises, we resize the images to the network’s standard input size of 224× 224 pixels
and employ the same parameters as for the face optimization problem.

3.3 Memory Footprint

The chosen network has an average size of 140 MB. Most of its parameters (and memory)
are in the convolution and fully-connected layers. The first FC layer contains 100M weights,
out of a total of 134M for the entire adapted network.

4 Metrics and Datasets

In this section, we describe the benchmarks (datasets) and selected accuracy estimators
considered in this work. All datasets used in this chapter were freely available to us and we
believe that it is the case for other researchers upon request sent directly to their creators.
Datasets composing our testing environment are the most commonly used benchmarks to
evaluate presentation attack detection for face, iris and fingerprints. Since all the bench-
marks have been already divided by their creators into training and testing subsets, we
decided to follow these divisions. Each training subset was divided by us into two disjoint
subsets multiple times to perform cross-validation-based training to increase generalization
capabilities of the winning model and to minimize an overfitting. The results reported fur-
ther in this chapter are those obtained on testing sets. The next subsections characterize
briefly all datasets and Table 1 shows their major features, in particular the number of
samples in each benchmark and their assignment to training and testing subsets.

4.1 Video-based Face Spoofing Benchmarks

In this chapter, we use two benchmarks used to evaluate the performance of PAD algorithms
for face modality, Replay-Attack [9] and CASIA Face Anti-Spoofing [113] datasets. These
datasets contain five types of attempted attacks performed with fake samples presenting
different qualities.

4.1.1 Replay-Attack [9]

This benchmark contains short video recordings of both valid accesses and video-based
attacks of 50 different subjects. To generate valid access videos, each person was recorded
in two sessions in a controlled and in an adverse environment with a regular webcam. Then,
spoofing attempts were generated using three techniques:
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• print attack : hard copies of high-resolution digital photographs were presented to
the acquisition sensor; these samples were printed with a Triumph-Adler DCC 2520
color laser printer;

• mobile attack : videos displayed on an iPhone screen were presented to the acquisition
sensor; these videos were taken also with the iPhone;

• high-definition attack : high resolution photos and videos taken with an iPad were
presented to the acquisition sensor using the iPad screen.

4.1.2 CASIA [113]

This benchmark was based on samples acquired from 50 subjects. Genuine images were
acquired by three different sensors presenting different acquisition quality (from low to
high): “long-time-used USB camera”, “newly bought USB camera”, and Sony NEX-5.
Pixel resolution of images was either 640×480 (both webcams) or 1920×1080 (Sony sensor).
Sony images were cropped to 1280×720 by the authors. During the acquisition, subjects
were asked to blink. Three kinds of presentation attacks were carried out:

• warped photo attack: high quality photos were printed on a copper paper and videos
were recorded by Sony sensor; the printed images were intentionally warped to imitate
face micro-movements,

• cut photo attack: eyes were cut from the paper printouts and an attacker hidden
behind an artifact imitated the blinking behavior when acquiring the video by the
Sony sensor,

• video attack: high quality genuine videos were displayed on an iPad screen of
1280×720 pixel resolution.

The data originating from 20 subjects was selected for a training set, while remaining
samples (acquired for 30 subjects) formed the testing set.

4.2 Fingerprint Spoofing Benchmarks

Two datasets used in Liveness Detection Competitions (LivDet, www.livdet.org) were
employed in this chapter. LivDet is a series of international competitions that compare
presentation attack methodologies for fingerprint and iris using a standardized testing
protocol and large quantities of spoof and live samples. All the competitions are open to all
academic and industrial institutions which have software-based or system-based biometric
liveness detection solutions. For fingerprints, we use datasets released in 2009 and 2013.

The LivDet2009 benchmark [57] consists of three subsets of samples acquired by
Biometrics FX2000, CrossMatch Verifier 300 LC and Identix DFR2100. Both the spatial
scanning resolution and pixel resolution vary across subsets, from 500 DPI to 686 DPI,
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and from 312×372 to 720×720 pixels, respectively. Three different materials were used to
prepare spoofs: Play-Doh, gelatin and silicone.

The LivDet2013 benchmark [27] contains four subsets of real and fake fingerprint
samples acquired by four sensors: Biometrika FX2000, Italdata ET10, Crossmatch L Scan
Guardian, and Swipe. Inclusion of samples from the Swipe sensor is especially interesting,
since it requires – as the name suggests – swiping a finger over the small sensor. This
makes the quality of spoofs relatively different when compared to the regular, flat sensors
requiring only touching the sensor by the finger. For a more realistic scenario, fake samples
acquired by Biometrika and Italdata were generated without user cooperation, while fake
samples acquired by Crossmatch and Swipe were generated with user cooperation. Several
materials for creating the artificial fingerprints were used, including gelatin, silicone, latex,
among others. The spatial scanning resolution varies from a small 96 DPI (the Swipe
sensor) to 569 (the Biometrika sensor). The pixel resolution is also heterogeneous: from
relatively non-standard 208×1500 to pretty large 800×750. This makes the cross-subset
evaluation quite challenging.

4.3 Iris Spoofing Benchmarks

To evaluate our proposed method in detecting iris presentation attack, we used two bench-
marks: AVTS [87] and a new dataset Warsaw LivDet2015, which is an extension of Warsaw
LivDet2013 [10]. These datasets contain attempted attacks performed with printed iris im-
ages, which were produced using different printers and paper types.

4.3.1 AVTS [87]

This benchmark was based on live samples collected for 50 volunteers under the European
project BioSec (Biometrics and Security). To create spoofing attempts, the authors tested
two printers (HP Deskjet 970cxi and HP LaserJet 4200L), various paper types (e.g., card-
board as well as white, recycle, photo, high resolution and butter papers), and a number
of pre-processing operations. The combination that gave the highest probability of image
acquisition by the LG IrisAccess EOU3000 sensor used in the study was selected for a
final dataset collection. The authors printed their samples with the inkjet printer (HP
Deskjet 970cxi) on a high resolution paper and applied an Open-TopHat pre-processing
to each image prior printing. The pixel resolution of each image was 640×480, which is
recommended by ISO/IEC as a standard resolution for iris recognition samples.

4.3.2 Warsaw LivDet2015

This dataset is an extension of the LivDet-Iris 2013 Warsaw Subset [10] and was used
in 2015 edition of LivDet-Iris competition (www.livdet.org). It gathers 2854 images of
authentic eyes and 4705 images of the paper printouts prepared for almost 400 distinct eyes.
The photographed paper printouts were used to successfully forge an example commercial
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Table 1: Main features of the benchmarks considered herein.

Modality Benchmark Color Dimension # Training # Testing
cols× rows Live Fake Total Live Fake Total

Face
Replay-Attack Yes 320× 240 600 3000 3600 4000 800 4800
CASIA Yes 1280× 720 120 120 240 180 180 360

Iris
Warsaw LivDet2015 No 640× 480 852 815 1667 2002 3890 5892
AVTS No 640× 480 200 200 400 600 600 1200

Fingerprint

LivDet2009: CrossMatch No 640× 480 500 500 1000 1500 1500 3000
LivDet2009: Identix No 720× 720 375 375 750 1125 1125 2250
LivDet2009: Biometrika No 312× 372 500 500 1000 1500 1500 3000
LivDet2013: Biometrika No 312× 372 1000 1000 2000 1000 1000 2000
LivDet2013: CrossMatch No 800× 750 1250 1000 2250 1250 1000 2250
LivDet2013: Italdata No 640× 480 1000 1000 2000 1000 1000 2000
LivDet2013: Swipe No 208× 1500 1250 1000 2250 1250 1000 2250

iris recognition system (i.e., samples used in real and successful presentation attacks).
Two printers were used to generate spoofs: HP LaserJet 1320 and Lexmark C534DN. Both
real and fake images were captured by an IrisGuard AD100 biometric device with liveness
detection functionality intentionally switched off. To get a free copy of this dataset follow
the instructions given at Warsaw’s lab webpage http://zbum.ia.pw.edu.pl/EN/node/46.

4.4 Error Metrics

In this chapter we use the error metrics that are specific to presentation attack detection,
and partially considered by ISO/IEC in their PAD-related standards [35].

Attack Presentation Classification Error Rate (APCER): proportion of attack
presentations incorrectly classified as bona fide (genuine) presentations at the PAD sub-
system in a specific scenario. This error metric is analogous to false match rate (FMR)
in biometric matching, that is related to false match of samples belonging to two different
subjects. As FMR, the APCER is a function of a decision threshold τ .

Bona Fide Presentation Classification Error Rate (BPCER): proportion of bona
fide (genuine) presentations incorrectly classified as presentation attacks at the PAD subsys-
tem in a specific scenario. This error metric is analogous to false non-match rate (FNMR)
in biometric matching, that is related to false non-match of samples belonging to the same
subject. Again, the BPCER is a function of a decision threshold τ .
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Half Total Error Rate (HTER): combination of APCER and BPCER in a single
error rate with a decision threshold as an argument:

HTER(τ) =
APCER(τ) + BPCER(τ)

2
(1)

5 Results

In this section, we present and discuss the experimental results of the proposed method.
Sections 5.1, 5.2 and5.3 show the performance results and the experimental protocols em-
ployed to validate the performance of the proposed methodology.

5.1 Face

In this section, we present the results of our proposed PAD for face modality. The experi-
ments are conducted considering the original protocol of the datasets used in this chapter
(cf., Section 4), as well cross-dataset protocol, hereafter referred to as same-dataset and
cross-dataset protocols, respectively. In general, a prime requirement of most machine
learning algorithms is that both training and testing sets are independent and identically
distributed. But, unfortunately, it does not always happen in practice – subsets can be
identically distributed (e.g., captured using the same sensor and in the same environment
conditions), but totally dependent due to adding of bias in the data (e.g., some dirt in the
biometric sensor used to capture both subsets, identities present in two subsets, artifacts
added during the attack simulations, etc.). In addition, the effects of the closed-world
assumption [88] may mislead us to believe that a given approach is perfect when in fact
its performance can be disastrous when deployed in practice for unknown presentation at-
tacks. In this context, both same-dataset and cross-dataset are key experimental protocols
in determining more accurate detection rates of an anti-spoofing system when operating in
less controlled scenarios with different kinds of attacks and sensors.

Same-dataset results. Table 2 shows the results for Replay-Attack and CASIA
datasets, considering that training and testing is performed on the same dataset. The
VGG network was able to detect all kinds of attempted attacks present in the Replay-
Attack dataset, and also to detect two methods of attempted attacks (hand-based and
fixed-support attacks), which were confirmed by the perfect classification result (HTER of
0.0%). Considering the CASIA dataset, the proposed method obtained an HTER of 6.67%.
The performance achieved by the proposed method on this dataset can be explained by
the high degree of variability present in the CASIA dataset (e.g., different kinds of attack
and resolution) that makes this dataset more challenging. In both datasets, we use the
k-fold cross-validation technique (k = 10) to built a classification model using the training
set, and also the development set whether it is available. Figures 3 and 4 present empirical
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distributions of the difference between two CNN output nodes and the corresponding ROC
curves.

Table 2: Performance results obtained in the same-dataset evaluations of the face PAD.
Pointers to plots presenting Receiver Operating Characteristics (ROC) and empirical Prob-
ability Distribution Functions (ePDF) are added in the last column.

APCER (%) BPCER (%) HTER (%) ROC and ePDF

Replay-Attack 0.00 0.00 0.00 Fig. 3

CASIA 0.00 13.33 6.67 Fig. 4
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Figure 3: Left: Empirical probability distributions (ePDF) of the difference between two
CNN output nodes (after softmax) obtained separately for authentic and spoof face sam-
ples. Right: ROC curve. Variant: training on Replay-Attack, testing on Replay-
Attack. The threshold shown in blue color on the left plot and the blue dot on the ROC
plot correspond to the approach when the predicted label is determined by the node with
the larger output.

Cross-dataset results. Table 3, Fig. 5 and Fig. 6 show the results obtained in cross-
dataset evaluation protocol. We can clearly see a dramatic drop in the performance when
we train and test on different datasets. Several sources of variability between the datasets
may contribute to this result. The first one is that the datasets contain different kinds of
attack. The Replay-Attack dataset contains three kinds of attacks (high definition-based,
mobile-based and video-based attacks) while the CASIA dataset includes additional two
kinds of attack (warp-based and cut-based photo attacks). Another source is the fact
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Figure 4: Same as Fig. 3 except the variant: training on CASIA, testing on CASIA.

that data comes from different sensors, which potentially produce samples with different
resolutions, color distributions, backgrounds, etc. The VGG architecture finds very specific
features and even when it is tuned to the specific problem, it does not generalize well to
be agnostic to specific properties of data acquisition process.

Table 3: Performance results obtained with the cross-dataset evaluations of face PAD
and using the overall testing set of each dataset.

Training Test APCER (%) BPCER (%) HTER (%) ROC and ePDF

Replay-Attack CASIA 42.67 51.67 47.16 Fig. 5

CASIA Replay-Attack 89.44 10.0 49.72 Fig. 6

5.2 Fingerprints

This section presents how our VGG-based approaches perform in detection of fingerprint
attack presentation. As for experiments with face benchmarks, we used the training subsets
(as defined by dataset creators) to make a cross-validation-based training, and separate
testing subsets in final performance evaluation. Fingerprint benchmarks are composed
of subsets gathering mixed attacks (for instance glue, silicone or gelatin artifacts) and
acquired by different sensors (cf. Table 1).

Same-sensor results. In this scenario, samples acquired by different sensors are not
mixed together. That is, if the classifier is trained with samples acquired by sensor X,
only sensor X samples are used in both the validation and final testing. As in previous
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Figure 5: Same as Fig. 3 except the variant: training on Replay-Attack, testing on
CASIA (cross-dataset testing).
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Figure 6: Same as Fig. 3 except the variant: training on CASIA, testing on Replay-
Attack.

experiments, 10 statistically independent estimation-validation pairs of non-overlapping
subsets were created, and the solution presenting the lowest HTER over ten validations
was selected for testing. Table 4 as well as Figures 7 and 8 show the same-sensor testing
results averaged over all sensors (used to build a given dataset) and presented for each
benchmark separately. These results suggest that the older benchmark (LivDet2009) is
relatively difficult since almost 20% of spoofing samples were falsely accepted in a solution
that falsely rejects only 3.45 % of authentic examples.
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Table 4: Performance results obtained in same-dataset evaluations of fingerprint PAD
using a part of testing samples acquired by the same sensor as in the training procedure.
Results are averaged over all subsets representing different sensors.

Training Testing APCER (%) BPCER (%) HTER (%) ROC and ePDF

LivDet2009 LivDet2009 19.37 3.45 11.4 Fig. 7

LivDet2013 LivDet2013 6.8 2.79 4.795 Fig. 8
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Figure 7: Left: Empirical distributions of the difference between two CNN output nodes
(after softmax) obtained separately for authentic and spoof fingerprint samples. Right:
ROC curve. Variant: training on LivDet2009, testing on LivDet2009. As in previous
plots, the threshold shown in blue color on the left plot and the blue dot on the ROC plot
correspond to the approach when the predicted label is determined by the node with the
larger output.

Cross-sensor results. For cross-sensor analysis, the newer benchmark (LivDet2013)
was selected. Each subset (estimation, validation and testing) was divided into two dis-
joint subsets of samples: a) acquired by ItalData and Swipe sensors, and b) acquired by
Biometrika and CrossMatch sensors. Table 5 shows that, as with the other modalities, we
can observe serious problems with recognition of both artifacts or genuine samples (two
first rows of Table 5). Figures 10 and 9, illustrating these results, suggest that a better
balance between APCER and BPCER can be found if there is a possibility to adjust the
acceptance threshold.

For completeness, same-sensor results are also presented on this dataset in two last
rows of Table 5, and in Figs. 12 and 11. As expected, a solution based on deep network
achieves much better accuracy when the type of sensor in known.
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Figure 8: Same as Fig. 7 except the variant: training on LivDet2013, testing on
LivDet2013.

Table 5: Performance results obtained in cross-dataset evaluations of fingerprint PAD
using a part of testing samples acquired by different sensor as in the training proce-
dure. All data comes for LivDet2013 fingerprint benchmark. IS = Italdata+Swipe, BC =
Biometrika+CrossMatch.

Training Testing APCER (%) BPCER (%) HTER (%) ROC and ePDF

IS BC 24.9 4.01 14.1 Fig. 9

BC IS 2.8 75.6 39.18 Fig. 10

IS IS 3.4 2.37 2.88 Fig. 11

BC BC 2.65 13.1 7.87 Fig. 12

5.3 Iris

This last section presents the results of iris presentation attacks detection. Two iris PAD
benchmarks were used, as described in Section 4), and both same-dataset and cross-dataset
experiments were carried out. Each dataset (Warsaw LivDet2015 and AVTS) are already
split by their creators into training and testing subsets. We followed this split and used the
testing subset only in final performance evaluation. The training subset, used in method
development, was randomly divided 10 times into estimation and validation disjoint subsets
used in cross-validation when training the classifiers.

The average HTER’s over 10 splits calculated for validation subsets were approx. 0.0001
and 0.0 for Warsaw and AVTS datasets, respectively. HTER = 0.0 for 5 out of 10 splits of
Warsaw training dataset. This means that the VGG-based feature extractor followed by a
classification layer trained on our data was perfect on the AVTS dataset, and also it was
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Figure 9: Same as Fig. 7 except the variant: training on Italdata+Swipe, testing on
Biometrika+CrossMatch.
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Figure 10: Same as Fig. 7 except the cross-sensor that training is realized on samples
composed Biometrika+CrossMatch, testing on Italdata+Swipe.

perfect on half of the splits of the Warsaw benchmark. Since there is no “best split” for
either of two datasets, we picked one trained solution presenting perfect performance on
the training subsets to evaluate them on the test sets.

Same-dataset results. Table 6 presents the testing results obtained in the scenario when
both training and testing sets come from the same benchmark. APCER and BPCER refer
to classification task, that is each sample belonging to the testing set was classified to
one of two classes (authentic or presentation attack) based on posteriori probabilities of
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Figure 11: Same as Fig. 7 except the variant: training on Italdata+Swipe, testing on
Italdata+Swipe.
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Figure 12: Same as Fig. 7 except the variant: training on Biometrika+CrossMatch,
testing on Biometrika+CrossMatch.

class membership estimated by the softmax layer of the trained network. Hence, single
APCER and BPCER (point estimators) are presented since this protocol is equivalent to
a single acceptance threshold. The results obtained in this scenario are astonishing: the
classifiers trained on disjoint subsets of samples originating from the same dataset are
either perfect (ATVS benchmark) or close to perfect (a perfect recognition of spoofing
samples of Warsaw benchmark with only 0.15% of authentic samples falsely rejected).
Figures 13 and 14 present empirical distributions of the difference between two CNN output
nodes and the corresponding ROC curves. The distributions are well separated for both
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benchmarks, suggesting high performance of the VGG-based solution applied for known
spoofing samples.

Table 6: Performance results obtained in same-dataset evaluations of iris PAD using
the overall testing set of each dataset.

Training Testing APCER (%) BPCER (%) HTER (%) ROC and ePDF

Warsaw Warsaw 0.0 0.15 0.075 Fig. 13

ATVS ATVS 0.0 0.0 0.0 Fig. 14
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Figure 13: Left: empirical distributions of the difference between two CNN output nodes
(before softmax) obtained separately for authentic and spoof iris samples. Right: ROC
curve. Variant: training on Warsaw LivDet2015, testing on Warsaw LivDet2015.
The threshold shown in blue color on the left plot and the blue dot on the ROC plot
correspond to the approach when the predicted label is determined by the node with the
larger output.

Cross-dataset results. Table 7 shows how catastrophically bad this method may be
if tested on cross-dataset samples. ATVS and Warsaw samples differ significantly in
terms of image properties such as contrast and visibility of iris texture. Especially, all the
printouts used to produce Warsaw fake samples were able to spoof an example commercial
iris recognition system, which is not the case in the ATVS benchmark. Hence, due to non-
accidental quality of Warsaw samples, this database seems to be more realistic and more
difficult to process than the ATVS. Indeed, training on Warsaw (the “difficult” benchmark)
and testing on ATVS (the “easier” benchmark) yields good results. Figure 15 presents well
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Figure 14: Same as Fig. 13 except the variant: training on ATVS, testing on ATVS.

separated empirical distributions of the difference between the output nodes of the network
obtained for authentic samples and spoofs.

Table 7: Performance results obtained in cross-dataset evaluations of iris PAD using
the overall testing set of each dataset.

Training Testing APCER (%) BPCER (%) HTER (%) ROC and ePDF

Warsaw ATVS 0.0 0.625 0.312 Fig. 15

ATVS Warsaw 99.9 0.0 49.99 Fig. 16

However, training on ATVS and testing on Warsaw yields almost null abilities to detect
spoofs (APCER = 99.9%). This may suggest that exchanging a single layer put on top of
the VGG-based feature extraction (trained for a different problem than spoofing detection)
is not enough to model various qualities of iris printouts prepared independently by different
teams and using different acquisition hardware. Fig. 15 confirms that almost all scores
obtained for spoofing samples are on the same side of the threshold as for authentic samples.
Certainly, if the threshold can be adapted (which is not typically done in the tests), one
can find other proportion between APCER and BPCER, for instance a threshold shifted
from 0 to -21.9 results in the EER 13.2%.

6 Conclusions

In this chapter, we proposed a PAD solution for three modalities widely employed for
designing biometric systems (i.e., face, iris and fingerprint) based on VGG network archi-
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Figure 15: Same as Fig. 13 except the variant: training on Warsaw LivDet2015, testing
on ATVS.
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Figure 16: Same as Fig. 13 except the variant: training on ATVS, testing on Warsaw
LivDet2015.

tecture, a deep network architecture originally proposed for object recognition. We showed
a methodology to adapt the VGG network to the two-class spoofing classification problem,
which was evaluated using six benchmarks available for scientific purposes. The exper-
iments were conducted taking into account the main challenges existing in this research
field such as classification across different types of attempted attacks, biometric sensors,
and qualities of samples used during attack. In this section, we discuss two main takeaways
observed after the analysis presented in this chapter.

The first conclusion is that deep learning is an astonishingly powerful approach to
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detect image-based presentation attacks in three considered modalities. Note that the final
solution is a subtle modification of the VGG network, trained for a different task, not
related to presentation attack detection. In the case of iris and fingerprints, the starting
network is not even related to the same object recognition task. The results showed that we
can use deep learning to detect spoofing attacks in some cases (AVTS iris benchmark) even
perfectly. In this simple approach, we have changed only the last layer, connected strictly
to the classification task performed by the VGG network. However, one can consider
replacing two or all fully connected layers and utilize the output of the convolutional part
of the network more efficiently.

The second takeaway comes from the cross-dataset and cross-sensor experiments. These
exceptionally poor results seem to be related to the flexibility that characterizes convolu-
tional networks. The flexibility allows them to “decide” which discovered properties of
the input data they use in the classification task. But if they are not trained on data
that contains a reasonable sampling of the situations present during testing, then they fail
terribly, since most of the features no longer correspond to the new data.

This, however, is not a surprising result and simply calls for solutions that take prior
knowledge about the modeled phenomenon into account. Apparently the current fasci-
nation with deep learning has brought back an old debate: should we use models that
are based on our understanding of the problem, which is neither full nor accurate (called
feature engineering or “hand-crafted” solutions) or rather flexible models that learn ev-
erything from the data (called feature learning or “data-driven” solutions)? It seems that
a reasonable mixture of both approaches should present the best reliability. We firmly
believe the solution to this problem is in taking the best of both worlds.
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