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Abstract Biometric systems are prevalent in access control but are vulnerable to
frauds. A typical attempt of violating them is through presentation attacks, in which
synthetic data is directly presented to an acquisition sensor to deceive these systems.
A well-designed biometric system should have a presentation attack detection (PAD)
module. A fruitful way to perform PAD is to model properties of peculiar traits
(artifacts) in synthetic data. Studies have been advocating for approaches that seek
to model the artifacts automatically from data (data-driven), achieving state-of-
the-art results in PAD. However, the following questions arise from this literature:
Which approaches are state of the art? When do these approaches fail? How can
such approaches complement the proposed ones based on human knowledge on
PAD? How robust are these approaches under cross-dataset scenarios? Are these
approaches robust against new attack types (e.g., face morphing)? Do these methods
provide other ways to perform PAD, for example, using open-set classifiers rather
than the classical binary formulation? Are these methods applicable to the multi-
biometric setting? In this chapter, we address these questions through a literature
review, focusing on three biometric modalities: face, fingerprint, and iris.

1 Introduction

In the contemporary society, oftentimes people and corporations manipulate in-
formation taking advantage of the increased adoption of digital systems — smart-
phones, bank and airport control systems, the Internet, and so on. To prevent such
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manipulations, much of the generated data, such as photos, conversational histories,
transactions, and bank statements, should be protected from indiscriminate access,
so people have control over their data and can maintain their right to privacy.

Traditionally, data protection methods rely on the use of external knowledge (e.g.,
passwords and secret questions) or tokens (e.g., smartcards), which may not be
secure, as they can be forgotten, lost, stolen, or manipulated with ease. In addition,
by using knowledge- or token-based solutions, the user is not required to claim an
identity [18], which allows the use of multiple identities by a single person.

To overcome the disadvantages of traditional security methods, biometric systems
use biological or behavioral traits pertaining to a user— face, iris, fingerprint, voice,
gait, among others — to automatically recognize her/him, therefore granting access
to private data. A biometric system gathers traits from an individual through a
sensor, extracts features from such traits, and compares them with feature templates
in a database [18], enabling the recognition of particular individuals.

However, biometric traits cannot be considered as completely private information,
as we inevitably expose them in our everyday life [12]: our faces in social media, our
fingerprints where we touch, our gait when we are recorded by surveillance cameras,
among many other examples. This leads to the biggest drawback of pure biometric
systems. In practice, our traces can be captured and offered to the system by an
adversary, in order to circumvent security mechanisms.

The attack to a biometric system, which occurs whenever an adversary offers a
counterfeit biometric trace to the acquisition sensor, is called a presentation attack
(or spoofing attack in earliest literature). It is considered as the most dangerous type
of attack to a biometric system [12], as the attacker primarily needs only access to
the victim’s traits, which are often plenty, and replay them to the biometric sensor.

In the earliest biometric methods and systems put into operation, there was little
to no concern in providing countermeasures to presentation attacks, mainly because
of the assumption that the counterfeiting of biometric traces, such as fingerprints
and faces, was difficult to achieve. However, it was not long before we began to
receive news of biometric systems hacked by the use of false traits. One of the
most prominent examples took place in 2013,1 when a Brazilian physician fooled
the biometric employee attendance device, by using prosthetic fingers bearing the
fingerprints of co-workers (Figure 1(b)). The investigation of this fraud scheme
revealed that 300 public employees had been receiving pay without going to work.

To deal with the urging threat, academia and industry have been researching
and applying automated methods to counterattack presentation attacks, a field of
research known as presentation attack detection (PAD). These methods perform
the task of differentiating between genuine (or bona fide) trait samples from attack
ones, referred to as presentation attacks. For some years, researched methods relied
on human knowledge to automatically look for specific characteristics expected on
genuine trait biometric samples, such as shape, texture, or liveness signs; or on
attack samples, such as artifacts and noise. Recently, data-driven methods have been
increasingly employed to learn relevant characteristics automatically from training

1 BBC News: https://www.bbc.com/news/world-latin-america-21756709.
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data, yielding state-of-the-art results for PAD without relying on knowledge-based
algorithms to extract specific characteristics from samples.

The clear advances in the area after the dissemination of data-driven approaches
have resulted in the possibility of generating models more robust to variations and
nuances, which are captured during training, and capable of extracting and analyzing
relevant sets of characteristics without the need of aggregating prior human knowl-
edge. Nevertheless, as themodels generated by data-drivenmethods are well fit to the
training data, sometimes they do not generalize well when applied in a cross-dataset
scenario, i.e., when testing data have characteristics not present/seen in the training
data (such as different sensor noise, different geometric and photometric variations
and distortions, etc.). This may indicate that methods based on prior knowledge con-
ceivably complement data-driven ones. Although extremely important, these and
other aspects are not often explored and discussed when new methods are published.

In this chapter, we cover the relevant literature on data-driven PAD methods,
presenting a critical analysis of open, often overlooked, issues and challenges, in order
to shed light on the problem. We answer and provide insights to important questions
surrounding PAD research and applications. In which scenarios do these methods
fail? How can such methods complement the ones based on human knowledge?
How robust are these methods under the cross-dataset scenario? Are these methods
robust against new attack types? Do these methods provide other ways to model the
PAD problem besides the classical binary decision? And finally, are these methods
applicable to multi-biometric settings?

To survey the relevant literature, we examine three widely used biometric modal-
ities: face (Figure 1(a)), fingerprint (Figure 1(b)), and iris (Figure 1(c)). Faces are
the most common biometric characteristic used by humans to recognize others [9],
and they are often considered in biometric systems due to their non-intrusiveness
and simplicity of acquisition (by any current camera). Systems based on face bio-
metrics can be attacked by the presentation of a photograph, video, or 3D model
of the user’s face. Fingerprints are patterns of ridges and furrows located on the tip
of each finger and can be captured by sensors that provide digital images of these
patterns [9]. Fingerprint biometric systems are often spoofed by the presentation of
fingerprints printed on paper or by 3D finger casts. Irises contain many distinctive
features [9], such as ligaments, ridges, rings, and others, which favors their use as
a biometric indicator. A fake iris sample can be created from an artificial eyeball,
textured contact lens, and iris patterns printed on paper [43].

2 Benchmarks to Evaluate PAD Solutions

In this section, we describe the most adopted benchmarks in the three biometric
authentication modalities explored in this paper. For each modality, there is a specific
table to favor the comparison. These tables present some characteristics for each
benchmark, such as dataset name, the total number of samples (videos or photos),
the division between bona fide (BF) samples and PA (presentation attack) and, if
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Fig. 1 Presentation attack modalities. (a) Face presentation attack, CASIA-FAS dataset [57] ex-
amples: genuine face, warped paper attack, cut paper attack, and video attack. (b) Fingerprint
presentation attack: six silicone fingers used to fool the biometric employee attendance device
at a hospital in Brazil. Source: BBC [1]. (c) Iris presentation attack, LivDet-Iris Warsaw 2017
dataset [53]: genuine iris and printed attack.

the data is already split into training and testing, the train/test sets ratio. This last
aspect is important to check whether the amount of data is enough to be used in
a data-driven approach and to ensure that there are no significant unbalanced sets
either between BF/PA or train/test. The number of subjects indicates diversity and
average resolution is important to check the sample sizes (height × width) coming
from different acquisition sensors. The setup column shows information regarding
the capturing environment, and the following column describes which type of attack
is considered. Acquisition and used devices for attacks give some information about
the dataset representativeness, as increasing the number and adopting realist devices
are pivotal for reducing the likelihood of specific artifacts that can be explored
instead of specific characteristics. Some cells of these tables are marked as N/A,
indicating “Not Applicable” and N/R indicating “Not Reported.” A short discussion
about the aspects of these benchmarks is also provided. To facilitate the link between
the benchmarks and the described research papers, Table 4 (Appendix A) shows all
references that have used each benchmark per modality.

Face PAD:

Face PAD benchmarks (Table 1) are usually composed of screen- and print-based
forms of attacks. However, some of them have also tried to use 3D masks. In some
of the benchmarks, the small number of subjects can be problematic as it shows
less variability. For instance, 3DMAD and NUAA contain faces from less than
20 subjects. In turn, MSU USSA, although with more subjects, is composed of
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celebrity faces acquired from the Internet, which may not retain detailed acquisition
information. The main drawback of CASIA is having only one device for the attacks,
lacking variety on acquisition artifacts. This is not the case for UVAD dataset, which
contains videos recorded with six different devices and considered seven different
devices when performing presentation attacks.

Iris PAD:

Iris PAD benchmarks (Table 2) are, in part, similar to Face PAD ones from the attack
interface perspective (screen- and print-based). Some of them, however, have also
explored specific aspects, such as contact lenses and artificial eyeballs (ND CLD
2015). IIITD Iris Spoofing dataset is unique in providing a combined attack setting
comprising paper printout of eyes and contact lenses. Yet, the most common attacks
are static, in which printed iris photos are adopted. The CASA Iris Fake provides a
considerable number of subjects and a consistent ratio between live and PA samples,
although training and testing sets are not specified. Not having a fixed split between
training and testing data may harden comparisons of different solutions and may
increase the likelihood of data leakage. An important aspect of IIITD WVU is its
naturally cross-dataset setting, once its training set incorporates 3,000 samples from
IIITD Iris Spoofing dataset.

Fingerprint PAD:

Fingerprint PAD benchmarks (Table 3) may consider different physical materials,
such as ecoflex and gelatin. PBSKD is the benchmark with most spoofing materials
(ten in total), creating one hundred spoof specimens that are acquired five times
using two different fingerprint scanners. However, the most important data-source
available nowadays is generated by the LivDet fingerprint competitions (years 2009,
2011, 2013, 2015, and 2017), which provide us with intra-sensor, cross-material,
cross-sensor, and cross-dataset validation protocols. In the two last editions, testing
samples were created using materials that are not seen in the training set, naturally
enabling (and pushing for) open-set experimentation. The table does not show the
numbers of each competition internal dataset, but it gives a holistic view of them
concerning size, the ratio between live and PA samples, and the ratio between
training and testing samples. The information about the number of subjects and
resolution is omitted in the table as they differ among LivDet internal datasets given
that their capturing scanners have different purposes (border control, mobile device
authentication, among others).
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Table 1: Face PAD benchmarks.
Dataset Size BF/PA Train/Test Subj. Resolution Setup Types of attacks Acquisition Devices for attacks

Replay-
Attack
[7]

1,300
photos and
videos

140/700 360/480 50 752×544 photos
720p videos Lighting and holding Screen and print Canon PowerShot

SX150

4x iPhone 3GS, 4x
iPad first genera-
tion and 2x Triumph-
Adler DCC 2520
color laser

CSMAD
[4]

263
photos and
videos

104/159 N/R 14 640 × 480 Four lighting conditions 6 silicone masks and
2 wearing ways

RealSense SR300
and Compact Pro
(thermal)

Nikon Coolpix P520

CASIA-
FASD
[57]

600
videos 150/450 Yes 50 1226 × 813

Seven evaluation scenar-
ios and three image qual-
ity

Three modes:
warped photo, cut
photo and video
playback

Sony NEX-5, new
and old USB camera iPad

3DMAD
[11]

76,500
frames 51k/25,500 N/R 17 640 × 480

Three sessions (2 weeks
interval), having 5 videos
of 300 frames from each
session

3D mask ThatsMyFace.com Kinect

MSU
USSA
[32]

10,260
images 1,140/9,120 N/R 1,140 705 × 865 Uncontrolled Screen and printed

photo
Celebrities from in-
ternet and Nexus 5

Cannon PowerShot
550D, iPhone 5S and
HP Color Laserjet
CP6015

OULU-
NPU
[5]

4,950
videos 720/2,880 1,800/1,800 55 N/R Lighting and background

in three sections Screen and print 6 mobile devices
front camera

2 printers and 2 dis-
play

NUAA
[47] 12,614 5,105/7,509 Yes 15 640 × 480 N/R Printed photos Webcam N/R

UVAD
[34]

17,076
videos 808/16,268 N/R 404 1366 × 768

Lighting, background
and places in two
sections

Screen 6 cameras Seven displays
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Table 2: Iris PAD benchmarks.
Dataset Size Live/PA Train/Test Subj. Resolution PA types Acquisition PA devices

Clarkson17 [53] 6,749 3,954/2,795 3,591/3,158 25 640 × 480
Printed images, patterned
contact lenses, and printouts
of patterned contact lenses

LG IrisAccess
EOU2200 iPhone 5 and printer

IIITD Iris Spoofing [15] 4,848 0/4,848 N/R 101 640 × 480 Printed images
Cogent CIS 202,
VistaFA2E and HP
flatbed optical scanner

HP Color LaserJet 2025 printer

IIITD Delhi [22] 1,120 N/R N/A 224 320 × 240 Textured and soft contact lens JIRIS, JPC1000, digi-
tal CMOS camera N/R

ND CLD 2015 [10] 7,300 4,800/2,500 6,000/1,200 278 640 × 480 Textured contact lens IrisAccess LG 4000
and IrisGuard AD100 JJ, Ciba, UCL and ClearLab

Warsaw17 [53] 12,013 5,168/6,845 4,513/2,990 186 640 × 480 Printed images IrisGuard AD100 and
Sony EX-View CCD Panasonic ET100

IIITD WVU [53] 7,459 2,952/4,507 3,250+3,000
/4,209 N/R Diverse Textured lens and printed im-

ages

CLI plus IIITD
datasets and IrisShield
sensor

Ciba and Aryan for the lens and HP P3015
for the printouts

CASIA Iris Fake [44] 10,240 6,000/4,120 N/A 500 640 × 480 Print, Contact, Plastic and
Synth LG-H100 Fuji Xerox C1110 printer, contact lens, re-

played video and artificial eyeballs
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Table 3: Fingerprint PAD datasets.
Dataset Size Live/PA Train/Test Scanner Model PA devices

LivDet 2009 [26] 11,000 5,500/5,500 2,750/8,250 Crossmatch, Identix and
Biometrika

Verifier 300 LC, DFR2100
and FX2000 Gelatin, silicone, play-doh

LivDet 2011 [54] 16,000 8,000/8,000 8,000/8,000 Biometrika, Digital Per-
sona, ItalData and Sagem

FX2000, 4000B, ET10 and
MSO300 Gelatin, latex, ecoflex, Play-doh, silicone and wood glue

LivDet 2013 [13] 20,590 11,740/8,850 10,350/10,240Biometrika, Crossmatch,
ItalData and Swipe

FX2000, L Scan Guardian,
ET10 and Swipe

Gelatin, body double, latex, play-doh, ecoflex, modasil, and
wood glue

PBSKD [8] 1,800 900/900 1,000/1,000 CrossMatch and Lu-
midigm Guardian 200 and Venus 302

Ecoflex, galatin, latex body paint, ecoflex with silver col-
loidal ink coating, ecoflex with BarePaint coating, ecoflex
with nanotips coating, Crayola model magic, wood glue,
monster liquid latex, 2D printed on office paper

Bogus [45] 16,000 8,000/8,000 8,000/8,000 Biometrika, Digital, Ital-
data and Sagem

FX2000, 4000B, ET10 and
MSO300 Gelatin, Playdoh, silicone, wood glue, ecoflex and silgum
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3 Data-Driven Methods for Presentation Attack Detection

In this section, we present the state-of-the-art methods for the three modalities
considered in this chapter (face, fingerprint, and iris). We present methods for each
modality, separately, andmethods proposed for themulti-biometric scenario.We also
discuss hybrid methods designed from data-driven and handcrafted methodologies.
Recently, some methods proposed in the literature showed how to harmoniously mix
these two approaches in order to take advantage from both.

3.1 Face PAD

Face recognition systems are one of the least intrusive biometric approaches and
can be performed with low-cost sensors (e.g., smartphone cameras). The intrinsic
nature of such systems, however, makes them the most vulnerable ones. An impostor
can perform illegal access in such systems by presenting a synthetic sample to
the acquisition sensor to impersonate a genuine user. An attack can be carried out
through presenting, to the acquisition sensor, 2D-printed photos, electronic display
of facial photos or videos, or 3D face masks. Mask-based attacks, although more
sophisticated than the other forms, are increasingly easy to produce. The process of
presenting synthetic samples to an acquisition sensor, however, inevitably includes
noise information and telltales, which are added to the biometric signal and can be
used to identify attempted attacks.

Despite being widely used for face recognition, data-driven models have just a
recent history in the Face PAD problem and have been showing their potential to
detect this kind of attack. Existing solutions are distinct, but a slight tendency can be
perceived for the ones based on neural networks. Usually, pre-trained Convolution
Neural Network (CNN) architectures are used as feature extractors, and these features
are then used to train a classifier (e.g., SVM). Ito et al. [17], for instance, have
investigated two different CNN architectures for Face PAD: CIFAR-10 and AlexNet.
Instead of using cropped images of faces (as in traditional face recognition literature),
the authors used the whole image as input to their method. The rationale behind
this approach is that by exploiting the whole image, more information about the
artifacts present in synthetic samples can be acquired. Although the proposedmethod
overcame some baselines, experiments were performed only on one dataset. Thus,
no general conclusion can be drawn about the robustness of the presented methods.

Due to the nature of data-driven approaches, it is not always possible to decode
the artifacts in attacks that are being exploited by the model. The model is entirely
in charge of extracting features from the data (images or videos) that maximize
the learning process. This aspect, however, can be partially controlled by extracting
dynamic and static features. In this context,Wu et al. [52] proposed awell-engineered
data-driven method. The idea is that, by combining the movements of a person in
a video (dynamic features) with texture features from the frames (static features),
complementary telltales of an attack can be assessed. The method extracts static
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features frame-by-frame using a CNN. For dynamic features, however, it employs
the horizontal and vertical optical flow by using the Lucas-Kanade Pyramid method
to extract dynamic maps from the frames followed by the CNN on the dynamic maps.
Both static and dynamic features are combined through concatenation and used as
input to a binary SVM classifier for decision making.

Yang et al. [55] have also explored static and dynamic features. An initial step
is based on the use of Local Binary Patterns (LBP) descriptors to extract more
generalized and discriminative low-level features of face images. LBP features are
successfully applied in an intra-dataset protocol, but the performance may degrade
severely in a more realistic scenario, i.e., inter- or cross-dataset protocol, due to
factors such as abnormal shadings, specular highlights, and device noise [6]. For that
reason, the authors encoded these low-level features into high-level features via deep
learning and proposed a sparse auto-encoder (SAE) to tackle the aforementioned
issues. SAE consists on the application of a sparse penalty in a traditional auto-
encoder, which is an axisymmetric single hidden-layer neural network, to strengthen
the generalization ability of themodel. It has a significant advantagewhen addressing
complex problems: extract characteristics that reflect the adhesion state. Finally, a
binary SVM classifier is used to distinguish genuine from synthetic face samples.
Nonetheless, the training was only performed with an intra-dataset protocol.

In the last years, dictionary learning, a well-knownmachine learning concept, has
been introduced as a candidate to build deep architectures, creating a new branch
called Deep Dictionary Learning (DDL). The idea consists of stacking up dictionary
learning layers to form a DDL [48] structure. Manjani et al. [25] developed a DDL
approach in which layers of single-level dictionaries are stacked one after another,
yielding a sparse representation of features. The main advantages are the mitigation
of the requirement of large training datasets, promising intra-dataset results, and the
discernment between different types of attacks, even unknown ones. However, the
main concerns about this representation are the difficulty of extracting fine-grained
features to deal with real mask attacks, and the lack of generalization of the method.

3.2 Iris PAD

Despite the better accuracy of iris authentication methods in comparison with meth-
ods based on face and fingerprint traits, the use of this technology was limited to
protect only high-restrict systems and places due to mainly the costs associated to
implementation of this technology. Nowadays, iris authentication methods permeate
our daily life due to research efforts toward making processes and sensors cheaper
and smaller, as we can found in modern computing devices, such as smartphones.

However, even the high-accuracy and advances in iris biometrics, the current iris-
based authentication systems still suffer from vulnerabilities to presentation attacks.
Currently, the most effective PA methods to bypass an iris authentication system
consist of showing to an acquisition sensor printed photos containing iris patterns
of legitimate users, textured and transparent contact lenses used for impersonating a
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legitimate user or for concealing the real identity of an attacker. From this perspective,
we categorized the existing works on iris presentation attack detection into two
non-disjoint groups based on their ability to detect the following attack types: print-
based attacks, performed with printout iris images; and methods aiming at detecting
attempted attacks performed with contact lenses.

The first CNN-based approach proposed to detect iris presentation attacks was
presented to the community byMenotti et al. [27]. In this study, the authors presented
a unified framework to perform architecture- and filter-level optimization for three
biometric modalities (iris, face, and fingerprint). The proposed framework was de-
veloped based on a shallow CNN architecture, the SpoofNet, with two convolutional
layers tailored to detect PAs in different modalities. This framework was convenient
to the community due to the small size of the datasets freely available at the time to
build iris PA systems. A drawback of the study, regarding the iris modality, relies on
the fact that the SpoofNet was evaluated only for print-based attempted attacks.

Similarly, Silva et al. [39] presented a study that evaluated the SpoofNet in other
attack scenarios different from those proposed in [27]. In that work, the authors
proposed some training methodologies considering the Notre Dame and IIIT-Delhi
datasets, which are composed by Near Infrared (NIR) iris images that represent
bona fide presentations and presentation attacks performed with textured (colored)
contact lenses and soft (transparent) contacted lenses. The authors also adapted the
SpoofNet to detect three type of images: non attack, textured, and transparent contact
lenses. The proposed method outperformed existing methods for the Notre Dame
dataset achieving an overall accuracy of 82.80%. The reported results suggested that
SpoofNet was able to detect transparent contact lenses better than textured contact
lenses and bona fide presentations (iris images without any contact lenses for this
particular dataset). The obtained results considering the IIIT-Delhi dataset reveal
some limitations of the SpoofNet architecture to distinguish these different kinds of
presentations, especially the confusion of bone fide samples with transparent contact
lenses attacks.

Toward overcoming the SpoofNet limitation, Raghavendra et al. [36] proposed a
novel CNN architecture more robust to distinguish bona fide presentations, textured,
and transparent contact lenses. Similarly to Silva et al. [39], the authors proposed a
multi-class CNNdesigned to classify an input image into bona fide and PA performed
with textured and transparent contact lenses. However, similar toHe et al., the authors
used normalized iris image patches as input to the CNN, while Silva et al. fed their
CNN with raw images and also used a six-layer CNN and dropout, a mechanism to
reduce over-fitting of the network.

In [16], He et al. proposed a multi-patch CNN capable of detecting both attack
types, print- and contact lens-based attempted attacks, by training a CNN with
normalized iris image patches of size 80×80 pixels,which can significantly reduce the
trainable parameters of a deep network and, therefore, prevent possible generalization
problems such as over-fitting. The authors reported near-perfect classification results
for both attack types. The comparison among the proposed method and other hand-
craft methods in prior art shows the superiority of CNN-based approaches over
feature engineering-based methods.
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Pala and Bhanu [29] developed a deep learning approach based on triplet con-
volutional neural networks, whereby three networks map iris image patches into a
representation space. This is done by either taking two real examples and a fake one
or two fakes and a real one, yielding intra-class and inter-class distances. The goal is
to learn a distance function so that two examples taken from the same class are closer
together than two examples taken from different classes. Two samples of the same
class are as close as possible, according to the learned distance function. The method
was evaluated in three different datasets containing print- and contact-lens attack and
compared with descriptor-based methods and a CNN approach from [27], achieving
the lowest average classification error rates for all datasets. The main advantage of
this framework relies on its small architecture, being easy to implement on hard-
ware, with reduced computational complexity. However, there is no guarantee that
the framework performs well in a cross-dataset scenario as no tests in this regard
were discussed in their work.

Kuehlkamp et al. [21] combined handcrafted and data-driven features to generate
multiple transformations on the input data looking for more appropriate input-space
representations. Handcrafted features are obtained by extracting multiple viewpoints
of binarized statistical image features (BSIF), which are then used to train lightweight
CNNs. After that, a meta-analysis technique is used for selecting the most important
and discriminative set of classifiers, performing meta-fusion from selected view-
points to build a final classification model that performs well not only under cross-
domain constraints, but also under intra- and cross-dataset setups. As an advantage,
this approach offers an iris PAD algorithm that better generalizes to unknown attack
types, also outperforming state-of-the-art methods in this regard.

3.3 Fingerprint PAD

Fingerprints are one of the most present biometric traits nowadays, being widely
adopted in security systems and sensitive environments. In some cases, a biometric
system could be potentially defenseless against fake fingerprints. However, research
has been made to mitigate the risk of attacks by proposing software- or hardware-
based solutions. Among the hardware-based solutions, fingerprint liveness detection
has been considered by most of the recent works. For software-based solutions, deep
learning approaches play a crucial role, yielding state-of-the-art results.

Pala et al. [30] proposed a patch-based triplet siamese network for fingerprint PAD.
Under a classical binary classification formulation (live/fake), the network comprises
a deepmetric learning framework that can generate representative features of real and
artificial fingerprints. The proposedmethod evaluates liveness by comparingwith the
same fingerprint set of patches used for training, instead of requiring an enrollment
database. It also tackles the limitations of current deep learning approaches regarding
computational cost, thus allowing mobile and off-line implementation.

In [28], three well-known deep learning networks were utilized in the form of
a binary classification problem. The networks were fine-tuned using the weights of
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a pre-trained network originally trained on the ImageNet dataset [20], rather than
training them from scratch for each network. The authors have shown the effect of
data augmentation techniques not only in the case of deep learning framework but
also when a shallow technique such as LBP was utilized. Additionally, they followed
an experimental protocol taking cross-dataset validation into consideration andmade
a significant comparison among the methods in their approach. Sundaran et al. [45]
showed how training a single CNN-based classifier using different available datasets
can aid generalization and boost performance.

An analytical study has beenmade in [49] for feature fusion by taking into account
different features and methods. A two-stage deep neural network that starts from
general image descriptors was adopted. In the first stage, the method is capable of
simultaneously learning a transformation of different features into a common latent
space used for classification in a second stage. Nogueira et al. [28] compared four
deep learning techniques for liveness detection. They studied the effect of using pre-
trained weights, concluding that using a pre-trained CNN could yield good results
without considering modifying neither the architectures nor their hyperparameters.

Deep Boltzmann Machines (DBMs) are another type of neural network that con-
sist of learning stochastic energy-based on complex patterns. DBMswere considered
in [42] and [41] for liveness detection in fingerprint data. In [42], a fingerprint spoof-
ing detection method was proposed based on DBMs. After the network was trained
on fingerprint data samples, a SVM classifier was trained in order to classify the
high-level features generated by the DBMs. In [41], the authors proposed a DBM-
based method which had a final layer added at the top of the network with two
softmax units, forming an MLP network, to identify normal and attack patterns.

Toosi et al. [50] proposed a patch-based approach for liveness detection. The
method extracts a set of patches and then a classifier is applied for each patch by
utilizing the AlexNet architecture as a feature extractor. The final class label is com-
puted based on the probability scores of patches. Another patch-based method [31]
attempted to detect liveness based on a voting strategy on patches classified by a
CNN.

Wang et al. [51] developed FingerNet, a DNN for fingerprint liveness detection
with a voting strategy at the end for decision making. Its architecture was inspired
by another DNN called CIFAR-10, with the difference that the convolutional and
pooling layers aremore complex, besides the inclusion of an extra inner product layer.
The training process, however, is not done directly on the images from these datasets.
Instead, each image is cut into patches of 32× 32 pixels, followed by a segmentation
step that excludes patches depicting background content, leaving the remaining
ones for training. The test process is also performed on image patches, and the
voting strategy is then applied by computing labels of each patch within a fingerprint
image. The label with the highest vote is chosen as the image label. Experiments were
performedwith LivDet2011 andLivDet2013 datasets, with FingerNet outperforming
CIFAR-10.

Zhang et al. [56] improved the Inception [46] architecture and built a lightweight
CNN for fake fingerprint detection. In the proposed architecture, the original fully-
connected layer was replaced by a global average pooling layer to reduce overfitting



14 Authors Suppressed Due to Excessive Length

and enhance robustness to spatial translations. For the experiments, the authors
created an in-house 2D dataset with fingerprints made from different materials
(along with some live examples). The reported results were expressed regarding a
weighted average rate of correctly classified live fingerprints and fake fingerprints,
outperforming not only the original Inception architecture but also other methods
from the literature based on CNNs.

4 Countermeasures for Face, Iris, and Fingerprint Presentation
Attack Detection

In this section, we discuss two approaches to deploy countermeasures based on data-
driven models for detecting presentation attacks, which were successfully used to
detect face-, iris-, and fingerprint-based presentation attacks in prior art.

4.1 Architecture and Filter Optimization

Finding suitable architectures for a given application is a challenge and time-
consuming task due to the high dimensionality of the hyper-parameter space. More-
over, the absence of enough data makes the hyper-parameter search harder for some
applications. For this reason, several techniques have been proposed in the literature
toward mitigating these problems by proposing heuristics to find suitable architec-
tures faster.

The Tree-structured Parzen Estimator (TPE) is a sequential model-based opti-
mization approach [3], which can construct models to approximate the performance
of hyper-parameters based on historical observations. In summary, the TPE algorithm
models probabilities P(x |y) and P(y), where x represents hyper-parameters and y

represents the loss function’s value associated with x. This modeling is performed
by using historical observations to estimate non-parametric density distributions for
the hyper-parameters, which is used to predict good values for them [2].

Another approach to explore the hyper-parameter space toward finding suitable
architectures for a given problem is the random search algorithm. In general, this
approach is more efficient than manual search and the grid search algorithm [35].
The random search algorithm explores the hyper-parameter space by identifying
valid hyper-parameter assignments, which defines a valid configuration space for the
problem. Finally, hyper-parameters are randomly selected, considering a uniform
distribution. The main advantage of this strategy is that it is simpler to implement it
in non-parallel and parallel versions.

The search for good filter weights in a deep learning architecture is also a chal-
lenging task. The huge number of parameters and the small size of the datasets
available for PAD in the literature may prevent optimization algorithms to find an
optimal or even reasonable solution.
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According to Menotti et al. [27], architecture and filter optimization strategies are
effective toward deploying suitable deep learning models. Fig. 2 shows a comparison
study of both strategies. The architecture optimization was performed considering
shallow architectures with up to three layers and filter kernel with random weights,
while the filter optimization was performed considering pre-defined architectures to
the problem and Stochastic Gradient Descent (SGD) for optimizing the filter weights,
which were initialized randomly.
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Fig. 2 Filter and architecture optimization results for face, fingerprint and iris presentation attack
detection considering different available datasets.

As we can observe, the architecture optimization approach was able to find
architectures with near-perfect classification results for face PADproblem (Fig. 2(c)),
with a Half Total Error Rate of ≈ 0.0%. For the iris PAD problem, this approach also
found an architecture with near-perfect classification results, whose accuracy was
superior to the filter optimization strategy in two of the three datasets (i.e., Warsaw
and Biosec) evaluated for this modality and competitive results for the MobBio
fake dataset, as illustrated in Fig. 2(b). In contrast, for the fingerprint PAD problem,
the filter optimization presented better results than the architecture optimization
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approach, obtaining a near-perfect classification result for all datasets evaluated in
this modality (Fig. 2(a)). For this reason, the interplay of these two approaches is
recommended, in cases that architecture optimization is not enough to find good
solutions. The two options are recommended specially when there is not enough
training data to represent the PAD problem of interest.

4.2 Fine-tuning of Existing Architectures

A second trend in the literature consists of building models using transfer learning
techniques to adapt pre-existing deep learning solutions pretrained with thousand
of hundreds of images to PAD problem. Depending on the modality, the transfer-
learning process could take advantage of pretrained architectures whose source
problem is related to the target problem, for instance, a pretrained architecture for
face recognition (source) for optimizing a deep learning architecture for the face
PAD problem (target).

With this in mind, Pinto [33] adapted the VGG network architecture [40], which
was originally proposed for object recognition by the Visual Geometry Group, by
transferring the knowledge obtained from the training process conducted with a
huge dataset, the ImageNet [20] dataset. The fine-tuned architectures were evaluated
considering the original protocols of the datasets used by the authors, as well as cross-
dataset protocol, whose training and testing subsets come from different sources.
Fig. 3 shows results for these two evaluation protocols. For all modalities, the cross-
dataset evaluation protocol presented poor results in comparison with the intra-
dataset evaluation protocol, with exception to ATVS Iris dataset. In several cases,
the performance of PAD solutions ranges from near-perfect classification results to
worse than random performance, showing us a clear need of focus for new techniques
considering the cross-dataset setup as well as robustness to unseen attacks (open-set
scenarios).

5 Challenges, Open Questions and Outlook

This section presents the main existing limitations of current methods and shed some
light on aspects that further research paths could undertake in order to tackle PAD
problems.

First of all, one of the main aspects preventing the introduction of robust methods
is the lack of representative public datasets. Oftentimes the existing datasets lack
generalization features and are normally small when we consider the era of big data.
This limitation leads to another one, which is the difficulty of performing cross-
dataset and domain-adaptation validations. In the absence of data, it is hard to learn
the changing aspects from one dataset to another or from one condition to another.
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Fig. 3 Intra- and cross-data validation results considering different datasets and biometric modal-
ities. Note how performance degrades when we move from the controlled setting of intra-dataset
validation to the wild settings of cross-dataset validation.

Although we can see some reasonable effort from researchers in designing tech-
niques for iris and fingerprint presentation attack detection, the same is still not true
for faces. Most works in this modality still rely on handcrafted features. Probably this
fact is related to the lack of good and representative datasets but we believe the most
likely reason is that faces vary much more often than iris and fingerprints (shadows,
lighting, pose, scaling) and deep-learning methods would need very robust functions
to deal with such transformations without incurring in overfitting. Here is probably
a very nice area of research.

Existing work in iris PAD using deep learning seems to be ahead of fingerprint
and face modalities. A recent method proposed by [21] seems to represent an im-
portant step toward cross-dataset validation. The metafusion of different views of
the input data has yielded the best results and represents a good tackle on handling
variations of different datasets. Despite this, faces and fingerprints are still far from
a reasonable path toward solving the problem. For fingerprints, there is a sensible
change in performance when changing acquisition sensors. For face, although ac-



18 Authors Suppressed Due to Excessive Length

quisition sensors play an important role in rendering the problem difficult to solve,
old problems known to researchers since the development of the first face recogni-
tion methods are still present such as shadow and illumination changes. Even in the
iris case, oftentimes existing methods fail under domain shift conditions caused by
cross-sensors and also for detecting transparent contact lenses. Clear efforts from
the community are needed in this regard as well.

Recently, Li et al. [23] have shed some light on learning generalized features
for face presentation attack detection. The authors proposed training their solution
with augmented facial samples based on cross-entropy loss and further enhanced the
training with a specifically designed generalization loss, which coherently serves as
a regularization term. The training samples from different domains can seamlessly
work together for learning the generalized feature representation by manipulating
their feature distribution distances. When learning domain-shift conditions, it seems
that proposed robust loss functions, as well as ways of implicitly learning data
variations, is a promising path to solve this hard problem.

With respect to open-set validation conditions and robustness against unseen
types of attacks, the literature is far behind. One of the first works considering this
aspect was presented in the context of fingerprint PAD [37], but the authors show
that much is still to be done in this regard. For faces and irises, the story is even
worse in this regard. This is surely one of the hottest topics in PAD nowadays along
with domain shift robustness as non-existing work shows reasonable performance
for open-set conditions in any of face, fingerprint or iris modalities.

Thus far, most of the existing prior art in PAD relying on deep learning methods
have only scratched the surface of their potential. Virtually all methods in the prior
art only adopt existing networks and tweak them somehow. Faces are a bit different in
this regard, as some authors have investigated the effects of dictionary learning and
stacking of different solutions. Nonetheless, few authors have endeavored to propose
significant modeling changes to such solutions, and this surely represents an open
avenue of opportunities.

Finally, it is worth mentioning that although we surveyed some 60 papers in this
chapter, the literature still presents a series of open problems in face presentation
attack detection ranging from proposing representative datasets to robust methods
under the cross-dataset and open-set validation setups to representative methods
robust to domain shifts. Calling the attention of the community for such problems
was the main motivation that led us to write this chapter, and we sincerely hope
researchers will consider these aspects in their future investigations for their PAD
problems.
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Appendix 1

Datasets and research work.

Table 4: Datasets per modality and prior work relying on them.
Modality Dataset References

Face PAD

Replay-Attack [25, 38, 17, 52, 6]
SMAD [25]
CASIA-FASD [25, 38, 55, 27, 6]
3DMAD [25, 24, 27]
MSU MFSD [24, 6]
MSU USSA
NUAA [55, 6]
UVAD [25]

Iris PAD

Clarkson17 [21]
IIITD Iris Spoofing [19]
IIITD Delhi [19, 39, 36]
ND CLD 2015 [21, 14, 16, 39, 36]
Warsaw17 [21, 29, 16, 27]
IIITD WVU [21]
CASIA Iris Fake [16]

Fingerprint PAD

LivDet 2009 [30, 28, 49, 31]
LivDet 2011 [30, 28, 49, 50, 51]
LivDet 2013 [30, 28, 49, 41, 50, 51, 42, 27]
PBSKD
Bogus [45]

Appendix 2

List of acronyms.

BSIF Binary Statistical Image Features
CNN Convolutional Neural Network
DBM Deep Boltzmann Machine
DCNN Deep Convolutional Neural Network
DNN Deep Neural Network
HTER Half Total Error Rate
LBP Local Binary Pattern
MLP Multilayer Perceptron
PA Presentation Attack
PAD Presentation Attack Detection
SAE Sparse Auto-Encoder
SVM Support Vector Machines
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