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Abstract—Presentation attack detection is a challenging prob-
lem that aims at exposing an impostor user seeking to deceive
the authentication system. In facial biometrics systems, this kind
of attack is performed using a photograph, video, or 3D mask
containing the biometric information of a genuine identity. In this
paper, we propose a novel approach to detecting face presentation
attacks based on intrinsic properties of the scene such as albedo,
depth, and reflectance properties of the facial surfaces, which
were recovered through a shape-from-shading (SfS) algorithm.
To extract meaningful patterns from the different maps obtained
with the SfS algorithm, we designed a novel shallow CNN
architecture for learning features useful to the presentation attack
detection (PAD). We performed several experiments considering
the intra- and inter-dataset evaluation protocols. The obtained
results showed the effectiveness of the proposed method consider-
ing several types of photo- and video-based presentation attacks,
and in the cross-sensor scenario, besides achieving competitive
results for the inter-dataset evaluation protocol.

Index Terms—Face Presentation Attack Detection, Face Spoof-
ing Attack Detection, Facial Biometric System, Shape-from-
Shading, Albedo, Reflectance, Depth, Intrinsic Properties of
Surface, Surface Reconstruction, Convolutional Neural Network,
Deep Learning.

I. INTRODUCTION

B IOMETRICS is an active research field whose today’s

challenges go far beyond obtaining a high precision

system. Nowadays, security aspects of biometric systems are

essential for a successful authentication mechanism due to

the vast possibility that an impostor user has for attacking

it. Among these possibilities, a presentation attack is the

easiest way to deceive such systems. This kind of attack can

be performed directly on the acquisition sensor without any

previous knowledge of the internal components of the system.

It is characterized by the action of presenting a synthetic

biometric sample, such as photographs, digital video, or even

a 3D mask, of a valid user to the acquisition sensor in order

to authenticate itself as a legitimate user [1].

Although several advances have been reported in the lit-

erature, face presentation attack detection (PAD) is still an

open problem. According to the Intl. Joint Conference on
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Fig. 1. Example of a facial surface reconstruction using an SfS algorithm for
presentation attack video frame.

Biometrics (IJCB) 2017 competition on generalized face pre-

sentation attack detection in mobile devices [2], the best

algorithm for detecting presentation attacks (PA) presented

an Attack Presentation Classification Error Rate (APCER) of

5.0% under environmental, attack types, and camera device

variations. Thus, five out of one every hundred attempted

attacks were successfully accomplished, which may render the

authentication process unfeasible in practice if we consider a

system with hundreds of thousands of users.

Currently, a major limitation of existing solutions for PAD is

the lack of ability to work in an unknown environment. In fact,

PAD solutions available in the literature present impressive

accuracy rates, with near-perfect classification results, when

they are trained and tested with data from same source.

However, when we consider challenging evaluation scenar-

ios, those algorithms present low performance, sometimes

becoming worse than random. For this reason, researchers

have promoted efforts to report their results considering two

evaluation protocols known as intra- and inter-datasets. An

intra-dataset evaluation protocol consists of testing a PAD
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algorithm using data that came from the same source as the

training data, whose samples were collected using the same

acquisition sensor and in the same environment. In turn, an

inter-dataset protocol consists of testing a PAD algorithm using

data from a different source as the training data, which means

we have data from different domains (i.e., different sensors and

environments). Such evaluation protocol is more challenging

and more suitable for reflecting a real operating scenario.

According to recent results reported in the literature, the

Half Total Error Rates (HTER) can increase drastically taking

into account inter-dataset evaluation protocol [3]. It is the case

of Pinto et al. [4] work that proposed a PAD method based on

analysis of the noise and artifacts left in the synthetic biometric

sample during its manufacture such as blurring, printing effect,

banding effect among others. Although the authors achieved

a low HTER value for the intra-dataset evaluation protocol

(2.8%), the HTER of this technique increases significantly,

considering the inter-dataset protocol (34.4%). Even in the

state-of-the-art techniques, values for error rates are still too

high. Boulkenafet et al. [5] reported an HTER of 2.9%
and 16.7% considering the intra- and inter-dataset protocols,

respectively, which means a relative change in terms of HTER

of about 475%, which is far from an acceptable value in

practice.

In this paper, we present a novel approach to distinguish a

synthetic face from real ones, taking into account optical and

physical properties of the scene captured by the acquisition

sensor. Our method takes advantage of the depth information,

associating it with light properties of the scene to detect an

attempted attack, using a technique known as shape-from-

shading (SfS). SfS was firstly proposed by Horn et al. [6]

and aims to estimate the shape of an object based on the

shade information present in its surface. Our hypothesis is that

the reconstructed surface from shading for PA samples might

contain strong evidence of synthetic patterns in comparison

to authentic samples. To the best of our knowledge, this is

the first attempt at using this kind of reasoning for the PAD

problem.

In contrast with 3D reconstruction and photometric stereo

techniques, SfS techniques require only one image of the

object under analysis. Moreover, the estimation of the shape

using these techniques does not require any additional hard-

ware, which makes possible the application of our technique

in devices equipped with only an RGB camera such as

smartphones and webcams. Fig. I illustrates a face surface

reconstruction using an SfS algorithm [7], which will be

described in details in Section III. In summary, the main

contributions of this paper are:

• a new method for face presentation attack detection

based on intrinsic properties of the surfaces reconstructed

through shape-from-shading modeling, which allows the

use of the proposed method in systems equipped with a

single RGB sensor;

• a new shallow CNN network designed to learn discrimi-

nant features from the albedo, reflectance, and depth maps

for the PAD problem, which achieved competitive results

for intra- and inter-dataset evaluation protocols;

• the investigation of using a shape-from-shading technique

for the presentation attack detection problem.

We organize the remainder of this paper as follows. Sec-

tion II presents some relevant related approaches to the face

presentation attack detection. Section III describes the pro-

posed method. Section IV presents the datasets and evaluation

protocols used in this paper, besides experimental results and

a comparison with methods available in the literature. Finally,

Section V presents the conclusions and possible directions for

future work.

II. RELATED WORK

Texture analysis is undoubtedly an important and promis-

ing line of investigation that made possible progress in this

research field toward the development of effective PAD al-

gorithms. Back to the First Competition on Counter Mea-

sures to 2D Facial Spoofing Attacks [8], the best pro-

posed algorithms [9], [10] explored different texture descrip-

tors, such as Local Binary Patterns (LBP), Gray-Level Co-

Occurrence Matrices (GLCM), Histogram of Oriented Gra-

dients (HOG), among others, for detecting printed-based at-

tempted attacks [11].

In order to push the state-of-the-art further, the Second

Competition on Counter Measures to 2D Face Spoofing

Attacks [12] presented to the community a novel dataset

(Replay-Attack dataset) [13] containing three different attack

types, print-, photo-, and video-based attacks. The winner

teams addressed the problem through a feature-level fusion of

texture- and motion-based features. The Replay-Attack dataset

was fairly challenging at the time, inviting further interesting

investigations of other cues for detecting face presentation

attacks.

Erdogmus and Marcel [14]–[16] explored depth information

for detecting face presentation attacks by analyzing both color

and depth data obtained by Microsoft’s Kinect sensor. The

authors proposed to use the Local Binary Patterns (LBP) de-

scriptor in both color and depth images to produce feature vec-

tors, which were used to feed a Linear Discriminant Analysis

(LDA) classifier to reveal an attempted attack. Pinto et al. [4],

[17], [18] also exploited alternatives for detecting face pre-

sentation attacks exploiting the residual noise present in the

fake biometric sample left during their recapture and recon-

struction such as blurring effects, printout artifacts, Moiré

patterns, among others. Similarly, Garcia and Queiroz [19]

and Wen et al. [20] explored these and other artifacts related

to image distortions caused mainly by the recapture process

of the original biometric signal.

Another cue that has been an object of investigation in the

literature is regarding the reflectance of the objects. Although

skin reflectance presents great variation due to different tonal-

ities of human skin [21], [22], researchers have successfully

used it in several applications [23]–[25]. In these cases,

however, the reflectance is measured through extra-devices, for

instance, thermal infrared imagery and near-infrared imagery.

Alternatively, some computational methods for estimating the

reflectance map of a scene from RGB images [26]–[28] have

been proposed in the literature to decompose an RGB image

into their reflectance and illumination components [29].



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST XXXX 3

CNN-based techniques also have been considered in the

literature. Menotti et al. [30] proposed a framework for opti-

mizing CNN architectures for the PAD problem considering

different modalities, including face biometrics. The authors

also proposed a shallow CNN network, the SpoofNet network,

for detecting iris, fingerprint, and face presentation attacks. Al-

though the authors achieved good results using this technique,

this work did not consider more challenging protocols such as

inter-dataset protocols and cross-sensor setups. Other attempts

at using shallow networks for the PAD problem have been

reported in the literature. CLDnet [31] and ContactlensNet [32]

networks were designed to detect contact lenses-based pre-

sentation attacks in iris biometric systems and contain five

and two convolutional layers, respectively. In [33], the authors

proposed an ensemble approach using shallow networks fed

with transformed inputs, which presented good generalization

in cross-domain evaluations [33]. Finally, Atoum et al. [34]

combine a patch- and depth-based CNN for face PAD, in

which the authors also achieved good results for the intra-

dataset evaluation protocol. However, this work also reported

their results only in the intra-dataset protocol.

Several works in the literature exploited a fine-tuning of

existing deep architectures such as AlexNet, VGG, VGG-

Face, and GoogleLeNet [35]–[38]. However, in general,

these architectures achieved near-perfect classification results

for the intra-dataset and, at same time, very poor results

(close to random) for the inter-dataset protocol. Recently,

Rehman et al. [39] proposed a new CNN-based anti-spoofing

technique using the VGG-11 architecture, in which the authors

reported impressive results for the intra- and inter-dataset

scenario. However, a serious methodological failure described

by the authors in Sec. 4.2.2 of the original paper [39], made

any comparison unfeasible. As mentioned by the authors, part

of the testing dataset was used to estimate the threshold τ ,

which was used for computing the APCER, BCPER, and

HTER values. More precisely, considering the inter-dataset

protocol, in which we have a training dataset and a testing

dataset, the authors used the training partition contained in

the test dataset for estimating the threshold τ , which obviously

biased the reported results. In contrast to Rehman et al., this

paper and other ones published in the literature use the testing

dataset only to report the performance results.

Differently from previous work in the literature, in this

paper, we propose a PAD technique that takes advantage of

depth, albedo, and reflectance information from RGB-images,

without the necessity of any extra-device such as Microsoft’s

Kinect, infrared sensor or light-field devices [40], [41]. Instead

of using different methods for computing each one of these

components, we propose to use a shape-from-shading algo-

rithm, which enables us to estimate these three representations

from a single RGB image. Additionally, we also propose a new

CNN architecture able to work in the intra- and inter-dataset

scenario. To the best of our knowledge, our work is the first

one to deal with these three schemes simultaneously using

shape-from-shading modeling for detecting face presentation

attacks.

III. PROPOSED METHOD

In this section, we present our proposed method for face

PAD, which is based on intrinsic properties of the surface such

as reflectance, albedo, and shape. As previously described, we

propose the use of SfS for measuring these properties and

use them as input for a Convolutional Neural Network (CNN)

method, which learns discriminative features for detecting

presentation attacks. The advantage of using an SfS method,

instead of using an extra-device sensor, is two-fold: (i) a shape-

from-shading method gives us an estimation of these three

properties at once, at no extra cost; and (ii) we came up with a

completely data-driven method, which enables our method for

use in biometric systems equipped with only an RGB camera

such as smart-phones.

The human ability to perceiving the shape of the objects

from its shading it is one of the most important aspects of

the human visual system. This ability is essential for the

human understanding of the world under a three-dimensional

perspective [42]. Some studies show that human can accurately

use shading cues to infer changes in the surface orienta-

tion [42]–[44]. In computer vision, there are two main classes

of methods for estimating the shape from shading: photometric

stereo and shape-from-shading methods. An essential differ-

ence between them is that photometric stereo methods require

two or more images of the same object under different lighting

conditions, whereas shape-from-shading methods require only

one image of the object to estimate its normal surfaces, making

SfS methods very attractive to our problem [45].

We believe that some SfS methods are more appropriate to

be applied in our problems than other methods in the literature,

according to assumptions and restrictions imposed during the

formulation of the problem. For instance, methods that add

a smoothness constraint to the surface might be inadequate

to be used in our problem because such constraint is not

contemplated when recovering the shape of faces due to some

cavities. Our work is based on Tsai’s approach [7], which does

not impose any restriction that could render its use improper

for the PAD problem.

A. Why Shape-from-shading for Detecting Presentation At-

tacks?

According to the law of reflections [46], the physical mech-

anism of the light reflection can be characterized in terms of

absorption and irradiation of the light incident onto a surface.

Basically, the beam of light that affects a flat surface may be

absorbed, transmitted, and reflected. The light reflected can

be mathematically understood by Snell’s law, which predicts

the directions of the light reflected and refracted, taking into

account the refraction index of the material and the roughness

of its surface, that is, the smoothness or texture of the surface.

When a beam of light affects a truly flat surface, each

incident ray is reflected at the same angle that we have

between the surface normal and such incident ray, but on

the opposite side of the surface normal. In contrast, when

a beam of light affects rough surfaces, the incident light

is reflected in several different directions. An ideal diffuse

reflecting surface that reflects the incident light in all directions
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is said to exhibit a Lambertian reflection. These two processes

are known as specular and diffuse reflection, respectively.

Although many materials can exhibit both types of reflection,

some materials reflect the light more diffusely (e.g., paper

fibers, non-absorbing powder such as plaster, poly-crystalline

material such as white marble, among others) [47]–[50].

The reflective power of the material is another interesting

physical property that we believe to be useful for the presenta-

tion attack detection problem. This property is also known as

surface albedo and can be defined as a measure of how much

light incident on a surface is reflected without being absorbed.

In other words, this property measures the reflectivity of a

material and gives an estimate of the level of the diffuse

reflection [51], [52]. Thus, objects that appear white reflect

most of the incident light, indicating a high albedo, whereas

dark objects absorb most of the incident light, indicating a low

albedo.

Finally, the last physical property investigated in this work

is the depth information associated with an object in the scene.

Considering the presentation attack instruments known in the

literature (e.g., photograph, video replay, mask), we clearly

have a significant loss of depth information, except for mask-

based presentation attacks. In fact, several works published in

the literature have successfully investigated features able to

characterize the depth information of face regions to point

out an attempted attack [15], [16], [53]. Basically, these

approaches propose to use depth sensors, such as Microsoft’s

Kinect sensor, to find an accurate depth map of the scene.

B. Surface Reconstruction: Recovering the Depth, Reflectance

and Albedo maps

In this section, we revisited the mathematical formulation of

the shape-from-shading method presented by Tsai et al. since

such equations were directly implemented in the algorithm

used in this work. Also, the following equations are the

essence of the shape-from-shading formulation adopted in this

work, and consequently, it is import to recap these equations

to have a clear understanding of what the albedo, reflectance,

and depth maps are.

The Tsai’s algorithm [7] uses a linear approximation of

reflectance function R to estimate the depth function Z from a

single image. The main idea is to apply a discrete approxima-

tion for the surface normal using the finite differences method

in order to linearize the reflectance function R in terms of Z,

and then solve the linear system through the Jacobi iterative

method [54].

Suppose that a point at position (x, y, z), in camera coor-

dinates, is at a distance z from the image plane and there

is a mapping between points in camera coordinates onto

the image plane created using the parallel projection (not

taking into account any sort of distortion). Assuming that

depth information is a function of image plane coordinates

Z = Zx,y , then the change in depth δz of the point related to

the change in image plane coordinate (x, y) can be expressed

by using the Taylor series expansion of the function Z about

point (x, y) as:

δz ≈
∂z

∂x
δx+

∂z

∂y
δy (1)

The gradient of the surface at point (x, y, z) is the vector

(p, q) = ( ∂z
∂x

, ∂z
∂y

) and, therefore, the normal of a surface patch

is related to the gradient by n = (p, q, 1), since the gradient

vector is orthogonal to the level surface Zx,y .

Now, suppose a Lambertian surface, which has only diffuse

reflectance and the brightness is proportional to the energy

of the incident light. In this case, the amount of light energy

incident on a surface is proportional to the area of the surface

as seen from the light source position, which can be expressed

as:

Ex,y = R(p, q) = ρI(n · s)

⇒ R(p, q) = ρ
(−p,−q, 1)
√

1 + p2 + q2
·
(−ps,−qs, 1)
√

1 + p2s + q2s

(2)

where Ex,y is the intensity at pixel (x, y), I is the illuminance

(or strength of light), n = (−p,−q, 1) is the surface normal,

s = (−ps,−qs, 1) is the light source direction, and ρ is the

albedo of the surface.

The SfS method employed in this work uses a discrete

approximation for p and q as shown in Equation 3 and

performs a linear approximation of Equation 4 based on the

Taylor series expansion considering the first order terms of the

function f about a given depth map Zn−1, which give us a

linear system of equations (Equation 5).

p =
∂z

∂x
= Zx,y − Zx−1,y

q =
∂z

∂y
= Zx,y − Zx,y−1

(3)

0 = f(Ex,y, R(∂z/∂x, ∂z/∂y))

0 = Ex,y −R(Zx,y − Zx−1,y, Zx,y − Zx,y−1)
(4)

0 = f(Zx,y)

≈ f(Zn−1
x,y ) + (Zx,y − Zn−1

x,y )
d

dZx,y

f(Zn−1
x,y )

(5)

When we consider Zx,y = Zn
x,y , that is, the depth at n-th

iteration, Equation 5 can be rewritten (Equation 6) and solved

by the Jacobi iterative method [54], considering an initial

estimate of the depth map Z0
x,y = 0.

Zn
x,y = Zn−1

x,y +
− f(Zn−1

x,y )

df(Zn−1
x,y )

dZx,y

(6)

The reflectance and albedo maps also can be obtained

directly from Equation 2. After finding the depth map Zn
x,y at

point (x, y), the reflectance map can be computed by using

Equation 7, while the albedo map can be found through

Equation 8.

R(p, q) = max

(

0, ρ
pps + qqs + 1
√

1 + p2 + q2

)

(7)

ρ(n)x,y =
Ix,y

n
(n)
x,y · s

(8)
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Fig. 2. Overview of the proposed method for face presentation attack detection. Given a training set, we reconstruct the face surfaces by using an SfS method,
which produces estimates for the albedo, reflectance, and depth maps. Then, the proposed CNN network is trained to learn discriminative features from these
maps. Finally, the classification model found during the training phase is used to decide if a given testing sample is a bona fide presentation or a presentation.

C. Convolutional Neural Network for Learning Intrinsic Sur-

face Properties

Convolutional Neural Networks (CNNs) [55] is a well-

known machine learning technique designed to learn dis-

criminative features from input data and also a mapping

function, for instances, for classification purposes. Their ability

to learn an efficient and effective representation space from

data has been extensively reported by the scientific community,

producing impressive results in many applications such as

object recognition [56], [57], video analysis [58], fake images

detection [59], [60], presentation attack detection [2], [30],

among others.

Inspired by Menotti et al. [30] and He et al. [61] approach,

the CNN architecture proposed in this work is composed

of a new variant of the SpoofNet network followed by one

residual block, as illustrated in Fig. 2. The original SpoofNet

is a shallow CNN architecture composed of two convolutional

layers, containing 16 and 64 filters, respectively, with a kernel

of size 5× 5. Each convolutional layer is followed by a max-

pooling layer, with a kernel of size 3×3 and a stride of 2 pixels,

and by a local normalization layer with a kernel of size 9×9.

On the other hand, the proposed CNN, hereafter named as

SfSNet network, comprises two convolutional layers with 16
and 32 filters, respectively, with a kernel of size 3×3 and stride

of 1 pixel. Each convolutional layer is followed by a max-

pooling layer, with a kernel of size 9×9 and a stride of 8 pixels.

Furthermore, in contrast to SpoofNet which uses RGB images

as input, the proposed CNN uses reflectance, albedo, and depth

maps as input to extract meaningful information for detecting

presentation attacks. At the end, we use dropout regularization,

with a dropout factor of 25%, to avoid overfitting. Finally, we

investigated two strategies to train the proposed CNN with SfS

maps:

1) using the SfS maps individually to train one CNN model

for each map; and

2) using the SfS maps to compound a multi-channel input

tensor to train a single CNN and thus have only one

decision model. In this strategy, we computed the three

SfS maps (albedo, reflectance, and depth) for each

color channel available in the RGB color space and

concatenated them to come up with an input tensor of

150× 150× 9.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for the pro-

posed method. Section IV-A describes the datasets used in the

experiments, whereas Section IV-B describes the experimental

protocols used to validate our approach. Section IV-C shows

the experimental setup of the proposed method regarding its

parameters, and Sections IV-D and IV-E show the obtained

results using the maps obtained with the shape-from-shading

algorithm and feature learning process. The remaining sections

describe performance results considering the intra- and inter-

dataset evaluation protocols and a comparison among the pro-

posed method and other approaches reported in the literature.

A. Datasets

We evaluated the proposed method in three datasets freely

available in the literature, which are described in details in the

following sections:

1) Replay-Attack dataset: This dataset contains videos of

presentation attacks and bona fide presentations of 50 iden-

tities, which were recorded with a webcam with a pixel

resolution of 320 × 240. This dataset provides three types

of presentation attacks: print-, mobile- and video- attacks

with high-definition resolution, which were split into three

subsets: the training set with 360 videos; the development set

containing 360 videos; and testing set with 480 videos, totaling

1, 000 videos of presentation attacks and 200 videos of bona

fide presentation [13].

2) CASIA dataset: This dataset comprises 600 videos of

presentation attacks and bona fide accesses of 50 identities.

The authors recorded both presentation attack and bona fide

presentation videos in three different qualities: (i) low-quality

videos captured by an old USB camera with 480× 640 pixel

resolution; (ii) normal-quality videos, which were recorded

by a new USB camera with 480 × 640 pixel resolution; and

(iii) high-quality videos captured with a Sony NEX-5 camera

with 1, 920×1, 080 pixel resolution. The types of presentation

attacks contained in this dataset include warped photo attacks,

cut photo attacks, photos and video attacks. Finally, this dataset

provides 240 videos for training and 360 videos for testing,

totaling 150 videos of bona fide presentations and 450 videos

of presentation attacks [62].
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3) UVAD dataset: This dataset contains bona fide presen-

tation and presentation attack videos of 404 identities, all

created at Full HD quality. The videos were recorded in two

sections considering different illumination conditions and en-

vironments. In total, this dataset provides 16, 268 presentation

attack videos and 808 bona fide presentation videos, which

were recorded through six acquisition sensors of different

manufacturers (Sony, Kodak, Olympus, Nikon, Canon, and

Panasonic). The video attacks were simulated with seven

different display devices, also with HD and Full HD quality.

The authors recommend using the videos from Sony, Kodak

and Olympus sensors for training, and the videos from Nikon,

Canon and Panasonic sensors for testing. This evaluation

protocol provides 3, 872 videos for training and 6, 416 videos

for testing, totaling 404 bona fide presentation videos and

9, 884 presentation attack videos [18].

B. Experimental Protocols

The performance of the proposed method is assessed

through two metrics recommended by ISO/IEC 30107-3 [63],

Attack Presentation Classification Error Rate (APCER) and

the Bona fide Presentation Classification Error Rate (BPCER),

in which the APCER is the proportion of presentation at-

tacks incorrectly classified as bona fide presentations and the

BPCER is the proportion of bona fide presentations incorrectly

classified as presentation attacks. Although, the ISO/IEC does

not aggregate these two measures, in this work we additionally

use two measures for that, the Equal Error Rate (EER) and

Half Total Error Rate (HTER), since the evaluation protocol

for some datasets recommends using them. The EER value is

defined by the threshold for which the APCER and BPCER

rates are equal, and the HTER is the average of APCER and

BPCER measures computed in a threshold τ , which must be

defined in a development set.

We evaluated our approach under two experimental proto-

cols, the intra- and inter-dataset protocols. In the intra-dataset

scenario, we validate the proposed method using each dataset

separately, and we follow the official protocols defined for each

dataset in their original papers. Therefore, the Replay-Attack

dataset is comprised of three subsets: the training set, which

was used to fit a classification model; the development set used

to find the EER threshold; and the test set, which was used

only to report the APCER, BPCER, and HTER values. For

the datasets composed of two subsets (CASIA and UVAD),

we use the training set to fit a classification model and to find

the EER threshold, and the test set to report the final results in

terms of APCER, BPCER, and HTER. We also reported the

EER value obtained in the test set for the CASIA dataset, as

suggested by the dataset’s authors. In the inter-dataset setup,

we use one dataset for training the proposed method and a

different one to test it.

C. Experimental Setup

This section describes parameter configurations and imple-

mentation details of the proposed method for reproducibility

purposes of the results presented in this paper.

Regarding the shape-from-shading algorithm used in this

work, the only parameter required by this algorithm is the

light source direction, whose value has been set to coordinate

(0, 0, 1). Therefore, we considered that the primary light

source is perpendicular to the faces during the acquisition,

which is a reasonable choice taking into account the datasets

used in the experiments and the nature of the PAD problem.

As the shape-from-shading algorithm works upon images, we

subsample the videos to have about 61 frames per video

(≈ 2 seconds). Moreover, we apply the shape-from-shading

algorithm to each color channel (RGB representation) with

the frames cropped in the face regions, whose locations were

provided by the datasets’ authors. Finally, we resize the SfS

maps found by the algorithm to (150×150), which were used

to feed the CNN networks.

We conducted the training process of the CNN networks

using 150 epochs and batches of 64. We used the Adadelta

solver for minimizing the categorical cross-entropy objective

function using a learning rate of 1e−2 without the learning

decay strategy. Finally, we use an L2 regularization in the

soft-max classifier, whose value was configured to 1e−4. The

seeds were pre-defined in order to obtain reproducibility of our

results. Finally, the class decision (bona fide presentation vs.

presentation attack) for an input video was taken considering

the fusion scores of its 61 frames by computing the median.

We use Keras (version 2.1.3) and Tensorflow (version 1.4.1)

frameworks1 to implement the proposed CNN network and the

source code of all proposed methods are freely available2.

D. Evaluation of the Proposed CNN Architecture

In this section, we evaluate the CNN network proposed in

this work, which was inspired by the SpoofNet [30], a shallow

network designed for the PAD problem, and by the Residual

Networks (ResNet). Here, we show the effectiveness of our

proposed CNN, the SfSNet network, by comparing it with the

original SpoofNet, ResNet [61], and Xception networks [64].

For both Xception and ResNet networks, we performed a fine-

tuning of a pre-trained version trained upon the ImageNet

dataset [55] since we do not have enough data for training

them from scratch for the PAD problem. Thus, after loading

the pre-trained weights, we remove the top layer and we freeze

the remaining layers to indicate that such layers will not be

trained. Thereafter, we add a fully connected layer with 1, 024
units followed by a soft-max layer with 2 outputs.

Table I shows a comparison among these CNN networks

for the CASIA dataset using the intra-dataset protocol. Both

SpoofNet and SfSNet networks outperform ResNet and Xcep-

tion networks. We believe that shallow networks are more

suitable for the PAD problem due to the nature of patterns

to be learned by the networks, which came from artifacts

added to the synthetic samples such as blurring, banding effect,

Moiré patterns, among others. Noticeably, such patterns can

be better understood as low-level features and deeper networks

are suitable for learning high-level features such as part of

complex objects.

1https://keras.io and https://www.tensorflow.org
2The source code is freely available for scientific purposes on GitHub

(https://github.com/allansp84/shape-from-shading-for-face-pad).
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TABLE I
PERFORMANCE RESULTS (IN %) FOR THE CASIA DATASET CONSIDERING THE INTRA-DATASET EVALUATION PROTOCOL.

Architecture Map Type APCER BPCER HTER Mean HTER

Albedo 68.9 68.9 68.9

ResNet [61] Depth 34.8 48.9 41.9 58.2

Reflectance 65.6 62.2 63.9

Albedo 8.5 78.9 43.7

Xception [64] Depth 18.2 55.6 36.9 38.1

Reflectance 29.6 37.8 33.7

Albedo 8.2 14.4 11.3

SpoofNet [30] Depth 14.4 11.1 12.8 11.1

Reflectance 8.5 10.0 9.3

Albedo 6.7 8.9 7.8

SfSNet Depth 11.1 5.6 8.3 8.6

(Proposed Method) Reflectance 15.2 4.4 9.8

E. CNNs with Shape-from-Shading Maps as Inputs

TABLE II
PERFORMANCE RESULTS (IN %) OF SFSNET NETWORK FOR

REPLAY-ATTACK AND CASIA DATASETS CONSIDERING THE

INTRA-DATASET EVALUATION PROTOCOL.

Dataset Map Type APCER BPCER HTER

Albedo 11.0 5.0 8.0

Depth 5.3 0.0 2.6

Replay-Attack Reflectance 6.5 1.3 3.9

Majority Vote 0.0 6.8 3.4

Multi-channel
6.3 0.0 3.1

input tensor

Albedo 6.7 8.9 7.8

Depth 11.1 5.6 8.3

CASIA Reflectance 15.2 4.4 9.8

Majority Vote 3.3 7.4 5.4

Multi-channel
1.5 3.3 2.4

input tensor

In this section, we evaluate two strategies to extract mean-

ingful information from the different maps using the proposed

CNN network. The experiments presented in this section were

performed using the intra-dataset evaluation protocol. The first

strategy consists of training a CNN network for each one of the

three types of maps available (albedo, reflectance and depth

maps), which give us three CNN-based classifiers. Then, a

fusion approach based on the majority vote is employed in

order to have a final score to decide whether a testing sample is

a presentation attack or a genuine access. The second approach

consists of giving to the network the multi-channel input tensor

as described in Section III. Table II shows the obtained results

considering these two strategies.

According to the results, the multi-channel input tensor

outperform the majority vote fusion strategy with a relative

error reduction of 7.7% for the Replay-Attack dataset and

more than 50.0% for the CASIA dataset. Besides having a

significant reduction overall, once we need to train only one

model, the multi-channel input tensor strategy also facilitate

the training of our CNN-based classifier and is more effi-

cient. This is because different maps may behave as a data

augmentation approach towards avoiding possible problems

regarding over-fitting. We also notice a significant difference

in performance of some maps across different datasets. For

instance, the albedo presented comparable performance, while

the depth and reflectance estimations presented considerable

differences. We believe that physical properties of devices used

to build the datasets can potentially introduce these variations

in performances for some maps such as reflectance and albedo

(e.g., matte and glossy monitors). Regarding the depth map,

we notice that light direction estimation used to compute

the normal surface can introduce a significant error in depth

estimation.

F. Intra-dataset Evaluation Protocol

In this section, we present performance results of our

approach for the datasets considered in this work. We followed

the evaluation protocol defined for each dataset and we also

reported performance results using the metrics suggested by

the datasets’ authors.

1) Replay-Attack Dataset: Fig. 3 shows the obtained Detec-

tion Error Tradeoff (DET) curves for different maps obtained

by the shape-from-shading algorithm and for the three types of

presentation attacks contained in this dataset. The aim of this

experiment is investigating the discriminability of these maps

for detecting the different attack types. The results indicate

that mobile-based presentation attacks were the most easily

detected by the proposed algorithm. Considering the depth

map (Fig. 3(b)), the proposed approach achieved an HTER of

2.6% considering the overall test set and perfect BPCER rates

for all attack types. Table III shows the performance results

for the network trained using the depth maps.

TABLE III
PERFORMANCE RESULTS (IN %) FOR THE REPLAY-ATTACK DATASET

CONSIDERING THE PRESENTATION ATTACKS SIMULATIONS INDIVIDUALLY.

Attack Type APCER BPCER HTER

Hight-Def 4.4 0.0 2.2

Mobile 3.1 0.0 1.6

Print 11.3 0.0 5.6

Overall test 5.3 0.0 2.6

2) CASIA Dataset: Fig. 4 illustrates obtained DET curves

considering the different presentation attack simulations. Here,
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(d) Multi-channel input tensor

Fig. 3. Results obtained on Replay-Attack dataset for the three attack types and for the different maps obtained with the shape-from-shading algorithm.
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(d) Multi-channel input tensor

Fig. 4. Results obtained on CASIA dataset for the different attack types and for the different maps obtained with the shape-from-shading algorithm.

the network trained with the multi-channel input tensor

achieved the best performance results for all categories of at-

tack present in this dataset. Furthermore, the warped- and cut-

based attacks were easier to detect than video-based attempted

attacks. We also notice that the network trained with the multi-

channel input tensor showed more robustness to deal with the

different types of presentation attack. Table IV shows the error

rates for this network, which achieved an HTER of 2.4%. For

the warped attack simulations, we achieved an APCER rate

of 0.0%, which means the network detected all warped photo

attack simulations.

TABLE IV
PERFORMANCE RESULTS (IN %) FOR THE CASIA DATASET CONSIDERING

THE PRESENTATION ATTACKS SIMULATIONS INDIVIDUALLY.

Attack Type APCER BPCER HTER EER

Warped photo 0.0 3.3 1.7 2.2

Cut photo 1.1 3.3 2.2 3.3

Video 3.3 3.3 3.3 3.3

Overall test 1.5 3.3 2.4 3.3

3) UVAD Dataset: In this section, we evaluate the proposed

method in a challenging scenario with presentation attacks and

bona fine presentations, both captured with different sensors,

which is named in the literature as a cross-sensor scenario [65].

Table V shows the obtained results for the different maps,

which shows that network trained using the depth maps is

the most discriminative network for detecting the presentation

attack in this dataset. Although the HTER of 14.5% obtained

in this dataset is higher than the ones in previous datasets,

this result is the lowest achieved in the literature as shown in

Section IV-H.

TABLE V
PERFORMANCE RESULTS (IN %) FOR THE UVAD DATASET CONSIDERING

THE DIFFERENT MAPS OBTAINED WITH THE SHAPE-FROM-SHADING

ALGORITHM.

Map Type APCER BPCER HTER

Albedo 24.6 20.0 22.3

Depth 10.7 18.3 14.5

Reflectance 22.1 31.7 26.9

Multi-channel input tensor 12.4 21.7 17.0

G. Inter-dataset Evaluation Protocol

We now turn our attention to the obtained results for the

inter-dataset evaluation protocol, which is the most challenging

evaluation protocol nowadays. The difficulty of this evaluation

protocol raises up from the fact that we have training and

testing scenarios different in terms of acquisition sensors, light

conditions, and environment (e.g., different background).

Table VI shows the obtained results of the proposed method

trained with the CASIA dataset and tested upon the other

ones previously mentioned, beside the OuluNPU dataset [2],

[66] considering its hardest evaluation protocol (Protocol IV).

Surprisingly, the proposed method achieved an outstanding

performance result for the Replay-attack dataset when we

consider multi-channel input tensor and only the video-based

attempted attack videos for training our CNN network, with an

HTER of 9.8%. For both OuluNPU and UVAD datasets, our

method achieved a better performance when we consider depth

maps for training our CNN network. On the other side, our

method achieved an APCER, BPCER, and HTER of 34.8%,

24.4%, and 29.6%, respectively, by using the Replay-Attack

dataset for training and the CASIA dataset for testing and

considering reflectance maps. Finally, considering the UVAD



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, AUGUST XXXX 9

TABLE VI
RESULTS (IN %) OBTAINED WITH THE CROSS-DATASET PROTOCOL CONSIDERING BOTH PRESENTATION ATTACKS SIMULATIONS INDIVIDUALLY AND THE

OVERALL TEST SETS OF REPLAY, UVAD, AND OULUNPU DATASETS .

Training Set Testing Sets

CASIA Replay-Attack OuluNPU UVAD

APCER BPCER HTER APCER BPCER HTER APCER BPCER HTER

Video 10.8 8.8 9.8 67.9 4.2 36.0 57.9 21.7 39.8

Overall 8.3 51.3 29.8 49.6 12.5 31.0 34.8 36.7 35.7

Warped 65.8 27.5 46.6 41.7 13.3 27.5 36.8 30.0 33.4

Cut 92.0 2.5 47.3 75.4 8.3 41.9 58.1 23.3 40.7

TABLE VII
COMPARISON AMONG EXISTING CNN-BASED METHODS CONSIDERING THE INTRA- AND INTER-BASED EVALUATION PROTOCOLS FOR THE DATASETS

CONSIDERED IN THIS WORK.

Methods Intra-Dataset Protocol Inter-Dataset Protocol

Replay-Attack CASIA Replay-Attack CASIA

HTER EER HTER HTER HTER

Li et al. [35] (Fine-tuned VGG-Face) 4.3 5.2 − − −
Li et al. [35] (DPCNN) 6.1 4.5 − − −
Atoum et al. [34] (Patches and Depth-Based CNNs) 0.7 2.7 2.3 − −
Menotti et al. [30] (Architecture Optimization) 0.8 − − − −
Li et al. [67] (Hybrid CNNs) 1.6 2.2 − − −
Pinto et al. [36] (Fine-tuned VGG network) 0.0 − 6.7 49.7 47.2

Yang et al. [37] (Fine-tuned AlexNet) 2.7 − 6.3 41.4 42.0

Patel et al. [38] (GoogLeNet + Eye-Blink Detection) 0.5 − − 12.4 31.6

Wang et al. [68] (Adversarial Domain Adaptation) 1.4 3.2 − 6.6 37.8

Liu et al. [69] − − − 27.6 28.4

SfSNet (Proposed Method) 3.1 3.3 2.4 9.8 29.6

dataset for training and the CASIA dataset for testing, the

proposed method achieved an APCER, BPCER, and HTER

values of 66.7%, 12.2%, and 39.4%, respectively, using the

depth maps. We believe the variabilities, in terms of attack

types and video quality, present in the CASIA dataset were

essential for the proposed method to achieved better results

upon the Replay-Attack dataset, which also contain different

attack types such as printed- and video-based attempted at-

tacks. On the other hand, the UVAD dataset contemplate only

video-based attempted attacks.

H. Comparison with State-of-the-Art Methods

In this section, we compare the proposed method with other

methods available in the literature. We select the most effective

CNN networks designed for the PAD problem, including the

networks specifically designed to estimate depth maps from

RGB images without using any kind of extra device [34]. We

notice that most effective methods that take into account the

intra-dataset evaluation protocol achieved poor performance

results in the inter-dataset protocol, as shown in Table VII.

The proposed method achieved the lowest HTER for the inter-

dataset protocol and competitive results for the intra-dataset

evaluation protocol, which demonstrates the potential of the

proposed method. Considering the complexity of the existing

networks, i.e. the number of convolutional layers, the proposed

CNN architecture provides a reasonable trade-off between

performance and hardware requirement, which can be directly

translated into memory consumption and training time of the

network.

I. Visual Assessment

In this section, we show a visual assessment of the albedo,

reflectance, and depth maps. Fig. 5 depicts these maps com-

puted from a bona fide presentation and from a presentation

attack video frame. These examples illustrate how the artifacts

affect the reconstruction of the surface, specially, in this

example, of the depth and reflectance maps. We believe that

the way how the algorithm computes the depth might improve

the highlighting of the artifacts present in the presentation

attack images. As mentioned in Section III-B, we perform the

estimation of the depth locally, which means that each point

(x, y) is reconstructed interdependently. When the algorithm

tries to compute the first and second order derivative of

outliers (e.g., noise or printing artifact), we come up with

a situation where the approximation might not be applied,

which produces the white spots in the reconstructed maps.

Moreover, the first and second order derivative computations

can potentially highlight printing artifacts, i.e., horizontal and

vertical lines. Fig. 6 shows the details of the reconstructed

surface considering a video frame of both classes of the

PAD problem, in which we evince natural pattern for the

genuine access (e.g., skin roughness) and synthetic patterns for

presentation attack image (e.g., horizontal and vertical lines).

Also, the reliance on a shallow network, which requires

less data for estimating good values for its parameters is also

an important factor that help us to find reliable models with

higher generalization capabilities. The problem of training

deep CNNs using small training datasets can potentially trigger

overfitting problems and thus produce unreliable models. To
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(a) Original frame (b) Depth map (c) Reflectance map (d) Albedo map

(e) Original frame (f) Depth map (g) Reflectance map (h) Albedo map

Fig. 5. Example of a bona fide presentation video frame (first row) and presentation attack video frame (second row). The first column illustrates original
frames captured by the acquisition sensor, whereas the other columns show their respective maps, in which the some artifacts unseen in the original frame
(horizontal and vertical lines) were highlighted during reconstruction.

(a) Reconstructed surface of the nose region of a bona fide presentation

(b) Reconstructed surface of the nose region of a presentation attack

Fig. 6. Details of the reconstructed surface for the video frames showed in
Fig. 5 from a genuine access (a) and an attempted attack (b), in which we
found strong evidence of a natural (skin roughness) texture pattern and of
a synthetic (horizontal and vertical lines) texture pattern for these respective
classes.

overcome this problem, this research takes advantage of trans-

formed feature spaces and leverages shallow networks to learn

useful representations for PAD detection on such transformed

inputs, thus requiring less training data examples. Finally, we

used the Gradient-weighted Class Activation Mapping (Grad-

CAM) algorithm [70] to produce a visual explanation to our

model, as illustrated in Figure 7. In this experiment, we first

performed a prediction using a reflectance map as input. Next,

we computed the Grad-CAM, which produced a Heatmap

that highlights the importance of an image’s regions for the

final decision-making. Finally, we combined the Heatmap and

the original image to visualize the importance of raw image

regions. We could observe that our CNN examines different

regions of an input image to detect the different types of

presentation attack.

(a) Bonafide presentation (b) Warped photo attack

(c) Cut photo attack (d) Video attack

Fig. 7. Visual explanation obtained using the Gradient-weighted Class
Activation Mapping (Grad-CAM) algorithm, considering our CNN network
trained with reflectance maps. Figure 7 (a) shows the visual explanation
to a bonafide presentation, while the Figures 7-(b-d) illustrated the visual
explanation for different attack types.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an algorithm for detecting

presentation attacks based on intrinsic properties of the scene

such as albedo, reflectance, and depth of the scene. We showed

that these properties are useful for detecting different types

of presentation attacks with satisfactory results in terms of

error rates. We also proposed a novel CNN network specially

designed for learning features from these different maps. The

ability of CNN networks in learning from data was crucial for
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our method to achieve the reported results, since the hand-

crafting feature engineering of these different maps could be

much more challenging.

The experimental results corroborated the effectiveness of

our CNN networks trained using these different maps. Par-

ticularly, the network trained with the depth maps and with

the concatenated maps showed more robustness for detecting

presentation attacks considering the inter-dataset evaluation

protocol. For the intra-dataset evaluation protocol, the depth

map achieved the best performance results for the UVAD

and Replay-Attack datasets, whereas the concatenated maps

achieved the best performance results for the CASIA dataset.

We believe there could be some complementarity between

these maps, which would allow our CNN network to learn

good features and deal with this complex dataset that contains

several kinds of photo and video presentation attacks.

Unquestionably, the inter-dataset evaluation protocol was

the hardest scenario for the proposed method, even considering

the cross-sensor scenario, in which we achieved better results

than the state-of-the-art, as confirmed through the results

obtained for the UVAD dataset. We believe our work could

help the community to have a better understanding about this

challenging problem, since the proposed method was able

to spot strong evidences of presentation attacks considering

the photographs- and video-based attempted attacks in the

reconstructed surface of the faces.

Future research efforts include the investigation of alter-

native approaches to combining the albedo, reflectance, and

depth maps toward extracting complementary patterns. This is

useful for detecting presentation attacks, as well as the investi-

gation of new approaches to recovering the surface properties

from shading by taking into account other reflectance models

such as Bidirectional reflectance distribution function (BRDF).

The study of methods for finding the light source that operates

in a real scenario (not with synthetic images) could also be

a promising investigation path toward improving the facial

surface reconstruction.

ACKNOWLEDGMENT

We thank CAPES (DeepEyes project), FAPESP (grant

#2019/16253-1), FAPESP through the grants #2017/12631-
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