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Abstract: Energy and storage restrictions are relevant variables software applications should be1

concerned about when running in low-power environments. Computer Vision (CV) applications, in2

particular, exemplify well that concern, since conventional uniform image sensors typically capture3

large amounts of data to be further handled by the appropriate CV algorithms. Moreover, much4

of the acquired data are often redundant and outside of the application’s interest, which leads5

to unnecessary processing and energy spending. In the literature, techniques for sensing and6

re-sampling images in non-uniform fashions have emerged to cope with these problems. In this study,7

we propose Application-Oriented Retinal Image Models that define a space-variant configuration of8

uniform images and contemplate requirements of energy consumption and storage footprints for9

CV applications. We hypothesize that our models might decrease energy consumption in CV tasks.10

Moreover, we show how to create the models and validate their use in a face detection/recognition11

application, evidencing the compromise between storage, energy, and accuracy.12

Keywords: Retinal image model; Space-variant computer vision; Foveation; Low-power; Energy13

consumption.14

1. Introduction15

By means of a conventional sensor, one can easily capture uniform high-resolution images and16

describe what is depicted. However, for computers, interpreting images is not trivial, demanding17

complex Computer Vision (CV) algorithms along with a proper management of the available resources,18

to allow the software applications to run efficiently in different hardware platforms. As a matter of19

fact, a computational burden might come into play due to real-time restrictions often imposed by the20

available hardware to process these high-resolution data [1]. In the mobile environment, for example,21

managing energy (i.e., battery life) is mandatory, as its negligence might prevent users from enjoying a22

satisfactory experience [2]. Whereas common strategies to save resources rely on uniform resolution23

reductions and frame-rate decreases, another one is to mimic the space-variant configuration of the24

human eye. Since some tasks as tracking and pattern recognition do not demand high resolution data25

across the whole image [1], it is reasonable to work with space-variant images.26

The paradigm of capturing and processing uniform images co-exists with mechanisms to manage27

a biology-inspired image representation in the Space-Variant CV field. The overall insight comes from28

the nature of the human eye, where cones and rods – the photo-receptors responsible for detecting29

color and luminance, respectively – show a non-uniform spatial configuration that induces variable30

visual acuity levels across the retina [3]. The highest density of cones lies in the fovea, the central31

area of the retina, whereas the lowest one is found across the periphery. This provides a wide field of32
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Figure 1. The proposed framework to generate application-oriented retinal image models. The
workflow begins by defining the application’s requirements regarding operation (e.g., objects’
positioning, illumination) and efficiency (e.g., storage, accuracy). Then, a proper implicit function
(e.g., l2) and the spatial configuration of the retinal image model – comprising foveal and peripheral
regions – are chosen. The next step is the generation of the model by means of an optimization
procedure that considers the implicit function and the spatial configuration to resample points in the
2-d cartesian space. The final artifact is an application-oriented retinal model comprised by uniformly-
and non-uniformly-sampled foveal and peripheral regions, respectively. This model is used to resample
uniform images, taking them to a space-variant domain and potentially contemplating the requirements
determined beforehand.

view and a high-resolution region that is used to foveate a point in a real scene, thereby reducing data33

processing to a dense, smaller region (fovea), or to a wider, sparse one (periphery) [3,4]. Both regions34

can also operate in synergy: the periphery examines coarse data to trigger a detailed analysis through35

foveation.36

Concepts of the human visual system have already been explored from the hardware and software37

perspectives. On the hardware side, the problem has been dealt with, mainly, by two fronts: (i) the38

development of imaging sensors with specific non-uniform spatial configurations [5], and (ii) the use of39

an intermediary hardware layer to remap uniform images into variable-resolution ones. The first front40

allows the capture of topology-fixed foveated images at sensing time, whereas the second one provides41

more flexibility to change the mapping without relying on software routines. Specifically, some42

initiatives like [1] exploited the versatility of Field Programmable Gate Arrays (FPGA) to implement,43

at logical level, different space-variant mappings of uniform images, as with the case of a moving44

fovea that is dynamically adjusted according to the application’s requirements. A similar study [6]45

integrated attention and segmentation mechanisms into a foveal vision system. The architecture of46

the solution comprised (i) a hardware layer responsible for mapping uniform cartesian images to47

space-variant ones and (ii) a software layer where segmentation and saliency estimation are done. In48

short, the salient regions from a frame might trigger a foveal shift to be performed by hardware when49

the next frame arrives.50

Pure software-based approaches, in opposition, offer more flexibility to simulations, albeit with51

higher computational costs. In [7], a saccadic search strategy based on foveation for facial landmark52

detection and authentication is presented. The authors apply a log-polar mapping to some image points53

and extract Gabor filter responses at these locations, thus imitating the characteristics of the human54

retina. For training, SVM classifiers are used to discriminate between positive and negative classes of55

facial landmarks (eyes and mouth) represented by the collected Gabor responses. When testing, the56

saccadic search procedure evaluates several image points in the seek of candidate landmarks that are57
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further used to authenticate the depicted individual. A more complete review on space-variant imaging58

from the hardware and software perspectives using log-polar mappings is detailed in [8]. Furthermore,59

in [9], a foveated object detector is proposed. The detector operates on variable-resolution images60

obtained by resampling uniform ones with a simplified model of the human visual cortex. The results61

showed that the detector was capable of approximating the accuracy of a uniform-resolution-oriented62

one, thereby providing a satisfactory insight to evolutionary biology processes. In another work [10],63

image foveation is exploited along with a single-pixel camera architecture to induce a compromise64

between resolution and frame rate. The images are resampled by a space-variant model that is65

constantly reshaped to match the regions of interest detected in the image by a motion tracking66

procedure, thus effectively simulating a moving fovea that increasingly gathers high-resolution data67

across frames. To facilitate comparisons among different sensor arrangements, an appropriate method68

is described in [11]. The idea is to provide a common space for creating lattices of any kind. To69

demonstrate the viability of the method, the rectangular and hexagonal lattices are implemented and70

images built according to both arrangements are further compared.71

Despite the progress in CV research fields in exploiting space-varying models, there is a72

lack of a single generic framework for handling seamlessly images generated by heterogeneous73

pixel sampling strategies. In this paper, we address this issue by proposing a framework for74

designing Application-Oriented Retinal Image Models (ARIMs) that establish a non-uniform sampling75

configuration of uniform images. We propose to define the appropriate model for an application76

on-demand, taking into account specific requirements of the target application. By exploiting such77

models, we hypothesize it might be possible to decrease the energy spent in computer vision tasks.78

We show how to create the models and validate their use in a face detection/recognition application,79

considering the compromise among storage rates, energy, and accuracy. We use a regular image sensor80

and perform the sampling procedures by means of a software layer, thus simulating the operation of a81

specific-purpose space-variant sensor and providing some flexibility. The overview of our framework82

is depicted in Figure 1.83

2. Proposed Approach84

In this section, we describe our methodology to generate ARIMs by detailing each step illustrated85

in Figure 1. The components of the proposed methodology will be presented in the context of a86

biometric application.87

2.1. Definition of Application Requirements88

Instead of using a traditional image, coming from a general uniform sensor, we argue that the89

best approach is to examine the target application and investigate its requirements/demands. CV90

applications can comprise a very diverse set of requirements, ranging from efficiency-related ones,91

such as storage, speed, energy, and accuracy, to other very application-specific ones, such as the92

need for objects to move slowly or be positioned in specific locations in the scene, be situated in a93

minimum/maximum distance from the camera, be illuminated by a close light source, and so further.94

The application considered in this paper is concerned with user authentication based on his face: the95

individual enters and leaves the scene by any sides, placing himself in front of a camera that captures96

the scene in a wide field of view.97

Although the authentication across a wide field of view is a good idea, since more faces are98

collected throughout the video, it is usual that the central part of the image be the protagonist of99

the process. In this vein, it is recommended that the individual stand or walk near the center of the100

image to proper positioning his/her face (e.g., to avoid severe rotations and perspective changes)101

for a more accurate authentication process. Thus, if one intends to reduce energy consumption,102

collecting faces only in a bounded central region (e.g., a square window) might be enough. On the103

other hand, restricting the image to its central part, albeit effective, might be seen as a very extreme104

decision, since other image areas may contribute with useful information for the authentication. In105
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Figure 2. Examples of implicit functions. From left to right: l1, l2, and l∞.

this sense, retaining some pixel data in such areas, even in a sparse manner is also appropriate. Finally,106

another suitable strategy towards energy reduction is downsampling the image before performing107

face detection/recognition. This might reduce the energy spent in the whole authentication process,108

but at the cost of a drop in accuracy.109

The issues discussed above illustrate examples of requirements to be defined by the analysis of110

an application’s domain. In this paper, they were essential to guide the definition of a model for the111

biometric application.112

2.2. Implicit Function Selection113

The design of the model starts with selecting a proper implicit function. The idea is that the114

function will act as a control mechanism to spread out the non-uniform sampled points over a desired115

image region. Figure 2 depicts examples of implicit functions we explored (l1, l2, and l∞).116

2.3. Definition of Spatial Configuration117

This step is concerned with the spatial characteristics the model must obey. We developed hybrid118

space-variant models inspired on the human retina. In general, the models comprise two very distinct119

regions: the fovea and the periphery. The fovea is a fixed-size region of uniformly sampled pixels120

according to a predefined grid. For instance, a region of size 26 × 26 pixels can be uniformly sampled121

by a grid of size 25 × 25 pixels. Given these characteristics, we can apply conventional CV algorithms122

in the fovea. In opposition, the periphery is a fovea-surrounding region with a non-uniform pixel123

density that decreases with the distance from the fovea.124

The following four parameters should be informed prior to the creation of the hybrid model:125

• Number of foveas: Surely a human eye has only one fovea, but it is perfectly fine for a model to126

comprise more than one region of uniform sampling, depending on the application on hand. In127

our biometric application, we took into account only one fovea.128

• Location of foveas: The foveas should be spatially organized adhering to the specific129

requirements of the application. In ours, the fovea is centralized in the image.130

• Density of foveas: The foveas can be downsampled to simulate a uniform image resolution131

reduction. We tested different densities (grids) for our fovea.132

• Density of periphery: The periphery is an important region that encompasses few sparse data133

in a non-uniform sampling configuration. As discussed previously, by retaining and wisely134

handling sparse peripheral information (e.g., detecting motion and coarse objects in such an135

area), the application’s resource usage might be optimized.136

2.4. Model Generation137

There are several ways to achieve a non-uniform point distribution. Our approach is inspired by
the computer graphics literature and previous works [12,13]. Besides the implicit function, the number
of peripheral (non-uniform) points and the aspect ratio of the sensor must be provided. We generate a
points distribution via a local non-linear optimization procedure that, from an initial distribution, tries
to minimize a global energy function defined in Equation 1, where ~x is a point in image space.

En ({~xi}) = ∑
i

∑
~xj↔~xi

(
||~xi −~xj|| − ( f (~xi) + f (~xj)

)2 (1)
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Figure 3. The evolution of an example of ARIM with 256 foveal (uniform), and 192 peripheral
(non-uniform) pixels. The l∞ is the implicit function.

The optimum solution for Equation 1, i.e., when En = 0, would be a placement of every ~xi such138

that the distance to its “neighbors” is the sum of the values of the implicit function at their locations.139

However, there is no closed-solution for this problem (the implicit function can be anything), nor140

any guarantees of a perfect solution for a scenario with an arbitrary number of points and implicit141

functions. Thus, we propose an approximation by means of a non-linear optimization procedure based142

on Spring-Mass Models. When doing so, each pair of points try to attract each other if they are too far,143

and try to repel each other when they are too close. We do not use Newton’s physical model of forces144

from springs. Instead, we have a mass-free system, so springs generate “velocity forces.”145

The optimization process is very sensitive to its initial conditions. A uniform distribution of the146

initial positions over the valid domain coupled with a careful choice of the implicit function allows147

the system to converge under 2000 iterations. Figure 3 illustrates the generation of an ARIM where148

the optimization of uniform point distribution is carried out using the l∞ implicit function. Upon149

convergence, we obtain the full neighborhood map (Voronoi diagram) of the model.150

3. Materials and Methods151

In this section, we present the experimental setup necessary for simulating the usage the proposed152

models. The chosen dataset closely resembles one of a biometric application.153

3.1. Dataset154

In our evaluations, we employed the Chokepoint Dataset [14] aimed at person155

identification/verification. The dataset comprises 48 sequences of images of 800× 600 pixels resolution.156

Each sequence depicts several individuals entering or leaving a portal, one at a time. There are 25 and157

29 individuals walking through portals 1 and 2, respectively. Moreover, each sequence is registered by158

three cameras placed above the portals to provide diverse sets of faces in different illumination and159

pose conditions. Due to the adopted settings, one of the cameras is able to capture image sequences of160

near-frontal faces. In short, the dataset is partitioned into the following four subsets:161

• P1E and P1L: The subsets of frame sequences of people entering and leaving portal 1,162

respectively;163

• P2E and P2L: The subsets of frame sequences of people entering and leaving portal 2,164

respectively;165

A subset is comprised of four (4) frame sequences (S1, S2, S3, and S4), each of which is registered166

by three cameras (C1, C2, and C3). For instance, the frame sequence P1E_S2_C3 refers to the second167

sequence (S2) of people entering portal 1 (P1E) and captured by camera 3 (C3).168

We used 34 image sequences (out of 48) from the dataset during our evaluations due to the169

following reasons:170

1. One (1) of the sequences of individuals entering a portal (P1E_S1_C1) was used to train the171

face recognizer. Such sequence comes from camera 1, which obtains near frontal-face images.172

That sequence is also captured by cameras 2 and 3 at different angles, hence, to avoid biased173

evaluations, we ignored such sequences (P1E_S1_C2 and P1E_S1_C3), as both of these contain,174

essentially, the same faces of the former up to slight angle variations.175
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Figure 4. Example of a simulation using one of our ARIMs and a sample sequence from the dataset [14].
First and third rows: original frames; Second and fourth rows: reconstruction with a model that
considers an optical flow peripheral representation. Green and yellow arrows indicate motion direction
to the right and left sides, respectively, whereas the ON and OFF labels refer to the operational status
of the foveal (face detection/recognition) and peripheral (optical flow) regions. Note that the motion
analysis, besides triggering foveal analysis, is also able to restart conveniently, as long as faces are not
detected in the fovea during a time interval of frames (left-most frame in the fourth row).

2. Eleven (11) sequences where no face is found in the fovea were ignored. This decision was176

taken because no face recognition accuracy evaluations (using our models) would apply to these177

sequences.178

3.2. Application Implementation179

The biometric application uses the Viola-Jones [15] algorithm, which is a well-consolidated and180

widely used face detection method in the literature. As for recognizing faces, we used a descriptor181

based on a pretrained Deep Neural Network (DNN) model, which is essentially a ResNet network182

with 29 convolutional layers trained on a dataset containing approximately 3 million faces. The model183

is publicly available and integrates the Dlib C++ Library [16].184

We simulated the operation of a specific-purpose sensor by re-sampling images according to our185

ARIMs. The idea is to generate images containing two regions: (i) the fovea, encompassing a small186

area where resolution is uniform, and (ii) the periphery, where pixels are arranged non-uniformly over187

a wider area. With such a configuration, we were able to perform experiments considering different188

foveal resolutions, while also taking advantage of the periphery according to the specific requirements189

of the application. In this vein, we adopted an optical flow representation (orientation and magnitude)190

for peripheral pixels. The motivation around that representation is that the detection/recognition in the191

fovea be triggered only when there is movement towards it coming from the periphery. Also, both the192

detection and recognition procedures turn off when no face is found under a predefined time interval.193

In this scenario, therefore, more energy can be saved. Figure 4 exemplifies image reconstructions with194

an ARIM, where we draw arrows representing the orientation and magnitude values of the identified195

motion in the periphery (bottom row).196

The workflow of the simulation process is depicted in Figure 5, where we also discern between197

the software and hardware layers to illustrate an ideal hypothetical case where a specific-purpose198

(space-variant) sensor was available. Both layers are connected by a 1-D vector (named as bytestream)199

that stores the foveal and peripheral pixel values captured by the sensor (i.e., the sampled image), and200

are input to the application. We adopted bytestreams instead of a 2-D image representation in the201

software simulation to bring the process closer to the ideal conceived scenario. The simulator was202

implemented in C++ using the OpenCV 3.0.0 library.203
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Figure 5. Implemented workflow for simulating the use of ARIMs in a specific CV application. In an
ideal scenario, the ARIM, a captured image frame, and the chosen pixel representations for foveal and
periphery areas are input to an hypothetical specific-purpose sensor that changes its configuration
at run-time. Such a sensor would yield a stream (bytestream) of pixel data from each region of the
captured image. The stream (not the 2-d image) would be forwarded to the CV application. For
simulation purposes, however, this architecture is fully implemented by software.

Figure 6. The pixel map of the evaluated ARIM and its configurations. The experimented foveal
configurations comprised three uniform sampling setups: 100× 100 (half density), 150× 150, and
200× 200 (full density) pixels. The pixel representations for the fovea and periphery were based on the
grayscale and optical flow (magnitude and direction) values, respectively.

3.3. Evaluated models204

We evaluated three different ARIMs. Each model comprises 384 non-uniform peripheral points205

and a central foveal region of size 200 × 200 pixels. The models diverge from each other in the206

uniform-sampling configuration sizes adopted for their foveas, which are 100× 100 (half density),207

150× 150 (75% density), and 200× 200 (full density). Those settings allow us to simulate different208

foveal resolutions. For all models, optical flow peripheral information is used to trigger the face209

detection/recognition in the fovea. An illustration of the pixel map of these models and their210

configurations are shown in Figure 6.211

3.4. Evaluation Criteria and Hardware Setup212

We compared the storage usage by computing the amount of bytes for storing the video, measured213

the energy spent (in Joules) in the biometric application for each evaluated model, and computed214

the mean recognition accuracy of each evaluated model considering all video frames. To measure215

energy, we used the Intel RAPL (Running Average Power Limit) interface [17], which is a set of internal216

registers from Intel processors called model specific registers (MSR). At the code level, we read these217

registers before and after a block of instructions, and calculate the difference between these values.218

More specifically, we read the MSR_RAPL_POWER_UNIT register to measure the energy spent in219

image readings, face detection/recognition procedures, and optical flow analysis (when using ARIMs).220
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Table 1. Number of pixels and data size reduction results for the evaluated models relative to the
baseline.

Num. of
pixels

Num. of pixels
reduction

Bytes per region Total
bytes

Data size
reductionFOV PER

Original 480000 - - - 1440000 -

Model_1 10384 97.83% 30000 768 30768 97.86%

Model_2 22884 95.23% 67500 768 68268 95.25%

Model_3 40384 91.58% 120000 768 120768 91.61%

The hardware setup to perform the experiments comprised an Intel Core i7-5500U, with 2.04GHz clock,221

4MB cache, and 16MB RAM.222

4. Results and Discussion223

In this section, we present the experimental results regarding storage allocated, face recognition224

accuracy, and energy consumption induced by different ARIMs.225

4.1. Storage reduction226

Quantifying reductions in numbers of pixels and image data sizes are essential for assessing the227

benefits of using different ARIMs in practical situations. Table 1 shows these measurements. We notice228

that the ARIMs reduced the number of pixels and the size of images in more than 91%.229

4.2. Face recognition accuracy230

We defined accuracy as the number of true positives (i.e., correctly labeled faces) in the foveal231

region of a frame sequence, each of which has a benchmark for comparison. The ChokePoint Dataset232

informs all faces and their labels detected and recognized in each uniform image frame. However, for233

a fair accuracy comparison among the uniform images and the ones re-sampled by our models, we use234

as benchmark only the information regarding the foveal region, meaning that faces in the periphery235

are not considered.236

Figure 7 shows an expected face recognition accuracy decreasing of our ARIM-resampled frame237

sequences compared to their correspondent benchmarks. The ARIMs rely on movement analysis238

to authenticate users, which creates a dependency between peripheral and the analysis of foveal239

information, some faces can be lost. Another variable influencing the accuracy rates is the foveal240

resolution of each tested ARIM. In fact, the accuracy rates increase with foveal resolution, and are241

not too low even under the 50% sampling degradation induced by Model_1, for example. In the case242

of Model_3, where foveal resolution matches that of the benchmark, the small loss in accuracy is243

justified by the quality of optical flow analysis, which seem to be acceptable for the tested application.244

Table 2 presents the minimum, mean, and maximum accuracy loss rates induced by each model in245

comparison to the benchmarks. Whereas the maximum obtained loss was 50% for Model_1 and the246

P2E dataset, very small loss rates (close to 0%) were registered in more than one scenario. Another247

interesting phenomenon is the high loss rates observed for the P2E and P2L datasets, possibly due to248

slight divergent conditions relative to the P1E and P1L datasets.249

4.3. Energy consumption evaluation250

The experiments show lower energy consumption values for scenarios involving our models, as251

evidenced in Figure 8. The difference in energy values among our models and the baseline results252

directly from he data amount reduction caused by the combination of peripheral optical flow and the253

sampled foveal face detection/recognition. The robust and timely activation/deactivation of these254

latter algorithms, therefore, reduce the total energy spent in the whole authentication process, while255
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Figure 7. Mean face recognition accuracy regarding each evaluated model and the benchmark frame
sequences from the P1E, P1L, P2E, and P1L datasets.

Table 2. Minimum, mean, and maximum accuracy loss rates induced by our ARIMs compared to the
provided benchmarks.

Dataset

Accuracy Loss

Model 1 Model 2 Model 3

Min. Mean Max. Min. Mean Max. Min. Mean Max.

P1E 0.032 0.123 0.264 0 0.050 0.108 0 0.006 0.021

P1L 0.060 0.248 0.613 0 0.094 0.255 0 0.023 0.103

P2E 0.174 0.353 0.500 0.032 0.172 0.318 0 0.006 0.037

P2L 0.143 0.300 0.529 0.033 0.086 0.265 0 0.063 0.206

keeping accuracy rates acceptable, as previously discussed. Table 3 presents the minimum, mean, and256

maximum energy reduction rates induced by each model relative to the benchmarks, i.e., the obtained257

energy savings. As expected, the reduction rates decrease with the increase in foveal resolution,258

because there is more data to process. This is verifiable by a quick comparison between the mean rates259

of Model_1 (half density) and Model_3 (full density), for example.260

5. Conclusions261

A crucial observation that led to the present study is that image data captured by uniform sensors262

is often dense and redundant, leading to computationally expensive solutions in terms of storage,263

processing, and energy consumption. We addressed this issue by exploiting a space-variant scheme264

which was inspired by mechanisms of biological vision, in particular, the way humans sense through265

the retina. We introduced a generic framework for designing application-oriented retinal image models.266

The models should be used to re-sample the input images prior to executing an specific CV task. We267

selected a biometric application to illustrate the conception and usefulness of appropriate models.268

The experiments on the Chokepoint dataset and three different ARIMs demonstrate the269

flexibility of the proposed framework in devising models with different properties regarding storage270

requirements, energy consumption, and accuracy performance. We could observe, for example, that271

the use of different space-variant strategies may lead to a big reduction in terms of storage resources272

and energy consumption, whereas the accuracy loss rates were low in most cases. Such a trade-off273
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Figure 8. Total energy consumption regarding each evaluated model and the benchmark frame
sequences from the P1E, P1L, P2E, and P1L datasets.

Table 3. Minimum, mean, and maximum energy reduction rates induced by our ARIMs compared to
the provided benchmarks.

Dataset

Energy Reduction

Model 1 Model 2 Model 3

Min. Mean Max. Min. Mean Max. Min. Mean Max.

P1E 0.505 0.551 0.598 0.463 0.508 0.550 0.414 0.456 0.489

P1L 0.612 0.667 0.711 0.582 0.619 0.710 0.490 0.548 0.657

P2E 0.536 0.610 0.672 0.439 0.549 0.619 0.381 0.454 0.551

P2L 0.533 0.571 0.618 0.406 0.516 0.620 0.332 0.464 0.603

evidences the viability of the proposed models and the conformity to our initial expectations regarding274

resources saving.275

In future works, we intend to use our framework in other CV applications, such as surveillance276

and assembling line inspection. Another possibility is to represent the periphery of our models as277

super-pixel-like artifacts (voronoi cells) that could be filled with the grayscale pixel value at each278

cell’s central point in the original image. The analysis of degraded peripheral regions represented279

in grayscale might be applied to the aforementioned application domains as well. Finally, we plan280

to integrate our approach into an FPGA, responsible for resampling uniform images according to281

some predefined or dynamic space-variant models. The models could be computed at the FPGA or282

by software, in which case an efficient communication mechanism between these layers should be283

implemented. Also, a more complex repertoire of variables would need to be considered, including284

the costs of computing the models and resampling in the FPGA, as well as the application’s domain.285

Even with these variables in the field, we believe such an infrastructure could yield positive impacts in286

the energy saving.287
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